PHILOSOPHICAL TRANSACTIONS.

XV.—Researches in Physical Astronomy. By J. W. Lubbock, Esq. V.P. and Treas. R.S.

Read May 19, 1831.

On the Theory of the Moon.

THE method pursued by Clairaut in the solution of this important problem of Physical Astronomy, consists in the integration of the differential equations furnished by the principles of dynamics, upon the hypothesis that in the gravitation of the celestial bodies the force varies inversely as the square of the distance, and in which the true longitude of the moon is the independent variable; the time is thus obtained in terms of the true longitude, and by the reversion of series the longitude is afterwards obtained in terms of the time, which is necessary for the purpose of forming astronomical tables. But while on the one hand this method possesses the advantage, that the disturbing function can be developed with somewhat greater facility in terms of the true longitude of the moon than in terms of the mean longitude, yet on the other hand, the differential equations in which the true longitude is the independent variable are far more complicated than those in which the time is the independent variable. The latter equations are used in the planetary theory; so that the method of Clairaut has the additional inconvenience, that while the lunar theory is a particular case of the problem of the three bodies, one system of equations is used in this case, and another in the case of the planets.

The method of Clairaut has been adopted, however, by Mayer, by Laplace, and by M. Damoiseau. The last-mentioned author has arranged his results with remarkable clearness, so that any part of his processes may be easily verified by any one who does not shrink from this gigantic undertaking; and the immense labour which this method requires, when all sensible quantities MDCCCXXXI.

are retained, may be seen in his invaluable memoir. Mr. Brice Bronwin has recently communicated to the Society a lunar theory, in which the same method is adopted.

Having reflected much upon the difficulties of this problem, I am led to believe that the integration of the differential equations in which the time is the independent variable, is at least as easy as the method hitherto, I think, solely employed, and I now have the honour to submit to the Society a lunar theory founded upon this integration, which is in fact merely an extension of the equations given in my Researches in Physical Astronomy, already printed, by embracing those terms which, in consequence of the magnitude of the eccentricity of the moon's orbit, are sensible; and the suppression of those, on the other hand, which are insensible on account of the great distance of the sun, the disturbing body. By means of the Table which I have given (Table II.), the developments may all be effected at once with the greatest facility.

The first column contains the indices, which I have employed to distinguish the inequalities. The numbers in the second column are the indices affixed by M. Damoiseau, in the Mém. sur la Théor. de la Lune, p. 547. to the inequalities of longitude.

 $t^* = nt - n_i t$, $x = cnt - \omega$, $z = n_i t - \omega$, $y = gnt - \nu$.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
--

^{*} Inconvenience arises from using the letter t in this acceptation. I have done so in order to conform to the notation of M. Damoiseau. † Variation. ‡ Evection. § Annual Equation.

-	_						·····	
63	37	2t-2y	105	84	t+z	146		y
64	38	2t-2y 2t+2y	106	85	t-2x	147		$\stackrel{g}{2}t-y$
65	5		107	86	t-2x t+2x	148		$\begin{bmatrix} 2 & t - y \\ 2 & t + y \end{bmatrix}$
	ł	x-2y					• • • •	
66	6	x + 2y	108	91	t-x-z	149		x-y
67	49	2t-x-2y	109	92	t+x+z	150		x + y
68	47	2t - x + 2y	110	89	t-x+z	151		2t-x-y
69	48	2t+x-2y	111	• • • •	t+x-z	152		2t-x+y
70	50	2t+x+2y	112	• • • •	t-2z	153		2t+x-y
71	24	z-2y	113		t+2z	154		2t + x + y
72	25	z + 2y	114		t-2y	155		z-y
73	57	2t-z-2y	115		t+2y	156		z + y
74	56	2t-z+2y	116	100	3t	157		2t-z-y
75	55 .	2t+z-2y	117	101	3t-x	158		2t-z+y
76	58	2t+z+2y	118	102	3t+x	159		2t+z-y
77	7	2x-2y	119	103	3t-z	160		2t + z + y
78	8	$\frac{1}{2}x + \frac{1}{2}y$	120	104	3t+z	161		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
79	65	2t-2x-2y	121		3t-2x	162		2x + y
80	63	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	122		3t+2x	163		2t-2x-y
81	64	$\begin{array}{c} 2t + 2x - 2y \end{array}$	123		3t-x-z	164		2t-2x+y
82		2t+2x+2y	124		3t+x+z	165		2t+2x-y
83		x+z-2y	125		3t-x+z	166		2t+2x+y
84		x + z + 2y	126		3t+x-z	167		x+z-y
85		2t-x-z-2y	127		3t-2z	168		x+z+y
86	• •	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	128		3t+2z	169		2t-x-z-y
87		$\begin{array}{c} 2t - x - z + 2y \\ 2t + x + z - 2y \end{array}$	129		3t - 2y	170		$\begin{bmatrix} 2 & x & x & y \\ 2 & t - x - z + y \end{bmatrix}$
88	••	$\begin{array}{c} z t + x + z + 2y \\ 2 t + x + z + 2y \end{array}$	130		3t+2y	171		2t + x + z - y
89	••	x-z-2y	131	120	$\begin{bmatrix} 3t & 2g \\ 4t \end{bmatrix}$	172		2t + x + z + y
90	••	x-z-z+2y	132	121	$\begin{array}{c} 4t \\ 4t - x \end{array}$	173		x-z-y
91	••	$\begin{array}{c} x - z + z y \\ 2 t - x + z - 2 y \end{array}$	133	122	4t-x $4t+x$	174	1	$\begin{array}{c} x-z-y \\ x-z+y \end{array}$
92	•••	2t - x + z - 2y $2t - x + z + 2y$	134	123	4t + x $4t - z$	175	• • • •	$\begin{vmatrix} x-z+y\\2t-x+z-y\end{vmatrix}$
93	••	$\begin{array}{c} 2t - x + z + 2y \\ 2t + x - z - 2y \end{array}$	135	123	4t-z $4t+z$	176	• • • •	2t-x+z-y 2t-x+z+y
93	••		136	124	4t+z $4t-2x$	177		$\begin{vmatrix} z t - x + z + y \\ 2 t + x - z - y \end{vmatrix}$
94 95	••	2t + x - z + 2y 2z - 2y	137	125	4t-2x $4t+2x$	178	• • • • •	$\begin{bmatrix} z t + x - z - y \\ 2 t + x - z + y \end{bmatrix}$
95 96	••	$\begin{array}{c} zz - zy \\ 2z + 2y \end{array}$	137	131	•	178		$\begin{vmatrix} zt + x - z + y \\ 2z - y \end{vmatrix}$
90	• •	$\begin{array}{c} 2z + 2y \\ 2t - 2z - 2y \end{array}$	139	_	4t-x-z	180		
	• •			100	4t+x+z		••••	2z + y
98	••	2t-2z+2y	140	129	4t-x+z	181	• • • •	2t-2z-y
99	••	$\begin{array}{c} 2t + 2z - 2y \\ 2t + 2z + 2y \end{array}$	141	••••	4t+x-z	182	• • • • •	2t-2z+y
100	•••	2t + 2z + 2y	142	• • • •	4t-2z	183	• • • •	2t+2z-y
101	80	<i>t</i> *	143	107	4t+2z	184	••••	2t+2z+y
102	81	t-x	144	127	4t-2y	185	• • • •	t-y
103	82	t + x	145	• • • •	4t+2y	186	••••	t + y
104	83	t-z						
***************************************	1							THE RESERVE OF THE PERSON NAMED IN COLUMN 2 IN COLUMN

$$\cos 2t \cos 2t = \frac{1}{2} \cos 4t + \frac{1}{2}$$

$$\begin{bmatrix} 131 \\ \cos 2t \cos x = \frac{1}{2} \cos (2t + x) + \frac{1}{2} \cos (-2t + x) \end{bmatrix}$$

$$\begin{bmatrix} 4 \end{bmatrix}$$

Hence the multiplication of $\cos 2t$ by $\cos 2t$ produces the arguments 131 and 0, similarly the multiplication of $\cos x$ by $\cos 2t$ produces the arguments 4 and -3; proceeding in this way the following Table was formed, by writing down the indices instead of the arguments themselves.

^{*} Parallactic inequality.

TABLE I.

Showing the arguments which result from the combination of the arguments 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 17, 20, 35, 62, 101, 146 and 147, with the arguments 1, 2, 3, &c. by addition and subtraction.

0	1	2	3	4	5	6	7	8	9	10	11	12	14	17	20	35	62	101	146	147
1 {	131 0	4 3	132 2	133 - 2	7	134 5	135	10	136	137	13 12	138 11	16 15	19	$\begin{array}{c} -22 \\ 21 \end{array}$	37 36	64 63	116 101		$\frac{146}{146}$ 1
]	4	8	1	- 2 10		16	13	_	8 3		23	6		29	38	53	66	103	150	-
2 {	3	0	-9 136			- 12 138	- 15 140	- 2 4	- 21	- 4 133	- 5 7	- 24	5 6	32	- 8 10	56 57	65 68	-102 117	149 152	$\begin{bmatrix} 153 \\ -151 \end{bmatrix} 2$
3 {	$-{132 \atop 2}$	9	0	_ 8		– 14		21	2	- 20	24	- 5	27	30	39	54	67	102		$\begin{bmatrix} \\ -149 \end{bmatrix}$ 3
4 {	133 2	10 1	131 8	137 0		141 11	139 14	22 3	132 20	 2	$\begin{array}{c} 25 \\ 6 \end{array}$	134 23	28 7	31 34	40 9	55 58	70 69	118 103		$\begin{bmatrix} \cdots \\ 150 \end{bmatrix}$ 4
$5\left\{ . ight.$	- ⁷	11 14	15 - 12	— 13 — 16		- 18	_ 19 _ 1	$\begin{array}{c} 23 \\ -26 \end{array}$	$-{27 \over 24}$	25 - 28	$-{}^{29}_{2}$	- 30	2 -32	35 - 5	41 44	59 —17	72 71	105 104		$\begin{bmatrix} 159 \\ -157 \end{bmatrix}$ 5
$6\left\{ . ight.$	134 - 5	16 12	138 14		1 18	142 0		28 24	 26	 23	4 3 0	₂	34 3	7 36	46 42	19 60	74 73	119 104		${-155}$ 6
7 {	135 5	13 15	140 11		19 1	131 17	$\begin{array}{c} 143 \\ 0 \end{array}$	25 27	 23	 - 26	31 3	132 29	4 33	37 6	43 45	61 18	76 75	120 105		$\begin{bmatrix} \cdots \\ 156 \end{bmatrix}$ 7
8 {		20 2	4 - 21	_ 22 _ 3	23 26	28 24	25 27	38 0	1 39	 _ 1	41 14	16 - 42	44 11	47 50			78 77	107 -106	162 161	$\begin{bmatrix} 165 \\ -163 \end{bmatrix}$ 8
9 {	136 8	3 21	 _ 2	$-{132\atop -}{20}$	27 24	 - 26	 - 23	1 39		131 38	15 42	 14	12 45	51 48			80 79	121 106		
10 {	137 8	22 4	133 20	2	25 28	 23	 26	40 1	131 38		43 16	141 41	46 13	49 52			82 81	122 107	166 165	$\frac{162}{162}$ 10
11 {	13 - 12	23 5	7 - 24		29 2	- 30	— 31 — 3	41 14	15 - 42			1 - 48	8 17	53 14			84 83	109 108	168 167	$\begin{bmatrix} 171 \\ -169 \end{bmatrix} 11$
12 {	138 11	6 24	5	134 23	3 30	2	132 29	16 42	14	141 41	1 48		18 9	15 54			86 85	123 108		$-\frac{167}{167}$ 12
13 {	139 11	25 7	135 23	₅	31 4	133 29		43 15	140 41	 14	49 1	131 47	10 19	55 16			88 87	124 109		$\frac{1}{168}$ 13
14 {	16 - 15	26 - 5	6 - 27	28 - 7	$\frac{2}{32}$	34 - 3	4 - 33	44 -11	12 - 45			- 18 9	50 0	11 56			90 89	111 110	174 173	$\begin{bmatrix} 177 \\ -175 \end{bmatrix} 14$
$15 \Big\{$	140 14	7 27	5	135 26	33 3	132 - 32	 - 2	13 45		139 - 44	19 9	136 17	1 51	57 12			92 91	125 110		$\begin{bmatrix} \\ -173 \end{bmatrix} 15$
16 {	141 14	28 6	134 26	 _ 5	4 34	2	133 32	46 12	138 44	 - 11	10 18	142 8		13 58			94 93	126 111	178 177	$\frac{174}{174}$ 16
17 {		29 -32	33 - 30			7 - 36	- 37 - 6	47 -50	51 - 48	49 - 52		15 54	11 -56	59			96 95	113 112	180 179	$\begin{bmatrix} 183 \\ -181 \end{bmatrix}$ 17
18 {	- 142 17	34 30	32	 29	6 36		134 - 35	52 48	50	- 47	16 54	14	58 12	1 60			92 97	127 112		
19 {	143 17	31 33	29	 - 32	37 7	135 35		49 51	47	- 50	55 15	140 53		61 1			100 99	128 113		$"180$ } 19
20 {	22 - 21	38 8	10 - 39														•••••			:::::} 20
21 {		9 39	8	136 - 38															•••••	} 21

Table I. (Continued.)

0 1	2	3	4	5	6	7	8	9	10	11	12	14	17	20	35	62	101	146	147	
22 { ""20	40 10	38	8																::::: }	- 22
$23\left\{ {rac{{25}}{{24}}} ight.$	41 11	13 - 42		47 8															·:::: }	- 23
$24\{{-23}$	12 42		138 41																::::: }	- 24
$25\left\{ \begin{array}{cc} \\ 23 \end{array} \right.$	43 13	139 41		49 10	•••••				•••••										:::::}	- 25
26 $\left\{ {rac{{28}}{{ - 27}}} ight.$	44 14	16 - 45			•••••														:::::}	- 26
27 {	15 45		140 - 44		•••••				•••••		•••••			•••••			•••••		:::::}	. 27
$28 \left\{ \begin{array}{c} \\ 26 \end{array} \right.$	46 16	141 44	 14	10 52		••••			•••••		•••••	•••••	•••••	•••••	•••••		•••••		:::::}	28
$29 \left\{ -\frac{31}{30} \right\}$	47 17	19 - 48			•••••						•••••		•••••	•••••	•••••		•••••		:::::}	29
30 {	18 48		142 - 47	12 54	•••••		•••••		•••••		•••••		•••••	•••••			•••••		:::::}	- 30
31 {	49 19	143 47	17		•••••			•••••	•••••	•••••	•••••		•••••	•••••	•••••		•••••		::::: }	31
$32 \left\{ \begin{array}{c} 34 \\ -33 \end{array} \right.$	- 50 - 17	- 18 - 51	- 52 19	14 56	•••••			•••••	•••••	•••••		•••••	•••••	•••••					::::: }	32
$33 \left\{ \begin{array}{l} \\ -32 \end{array} \right.$	19 51	17	143 - 50	57 15	•••••			•••••						•••••	•••••				::::: }	33
34 {	52 18	142 50	 17		•••••			•••••			•••••		•••••		•••••	••••			::::: ¹ }	34
$35 \left\{ -\frac{37}{36} \right\}$	53 - 56	57 - 54	58 - 58	59 17	•••••	•••••								•••••	•••••				:::::}	35
36 {	58 54	56	_ 53	18 60	•••••								•••••	•••••					:::::}	36
37 {	55 57	 53	56	61 19													•••••	- i	:::::}	ı,
$62\left\{ -rac{64}{63} ight $	- 65	- 68 - 67	- 6 9	- 72 - 71	- 74 - 73	- 76 - 75	- 78 - 77	- ⁸⁰	- 82 - 81	- 84 - 83	- 86 - 85	90 -89	- 96 - 95		•••••		į		}	8
$egin{array}{c c} 63\left\{egin{array}{c} 144 \ -62 \end{array} ight. \end{array}$	69 67	65	– 66	75 73	71	- 72	81 7 9			87 85	83	93 91							}	
$egin{array}{c c} 64 \left\{ & egin{array}{c} 145 \ 62 \end{array} ight. \end{array}$	70 68		- 65	76 74	72	71	82 80	78		88 86	84	94 92	100 98			 1	130 115	 148	:::::}	64
$65\left\{ -rac{69}{68} ight $	- 62	- 1	- 81 - 64	83 89						•••••						:::		:::	:::::}	65
$66\left\{ -rac{70}{67} ight $	78 62	- ⁶⁴ - ⁷⁹	- ⁸²	90								•••••	•••••			:::		:::	:::::}	66
67 {	63 7 9	- 62	- : [•••••			•••••	•••••	•••••								:::	::::: }	67
68 {	64 80		145 - 77	86				•••••							•••••			:::	:::::}	68
69 {	81 63	144 77	- 62	87 93												1		:::	::::: }	69

Table I. (Continued.)

0	- 1	2	3	4	5	6	7	8	9	10	11	12	14	17	20	35	62	101	146	147
70	{ 66	82 64	145 78									•••••				:::				} 70
71	$\left\{\begin{array}{c} 75 \\ -74 \end{array}\right.$	- 83 - 90	91 - 86	87 - 94	95 - 62															::::: } 71
72	$\left\{ egin{matrix} 76 \\ -73 \end{matrix} \right\}$	- 84 - 89	92 - 85	- 88 - 93	96 62	•••••														····· } 72
73	{ _ 72	93 85	89	 - 84	63 97															} 73
74	{ _ 71	94 86	90	 83	64 98															} 74
75	{ ···	87 91	 83	 - 90	99 63	•••••														····· } 75
76	{ ···	88 92	 84	 89	100 64	•••••	•••••													····· } 76
101	$\left\{ egin{array}{c} 116 \\ -101 \end{array} ight.$	103 102	$-117 \\ -102$	118 103	105 104	119 104	120 105	107 106	121 106	122 -107	109 108	123 108	111 110				115 114	1 0	186 185	
102	$\left\{egin{array}{c} 117 \\ -103 \end{array}\right.$	101 106	121 101	116 107	110 108				••••]::::: }102
103	$\left\{egin{array}{c} 118 \\ -102 \end{array} ight.$	107 101	116 106	122 101	109 111							•••••			•••]::::: } 103
104	$\left\{ egin{array}{c} 119 \\ -105 \end{array} \right]$	111 108	123 110	$^{126}_{-109}$	101 112							•••••								} 104
105	$\left\{egin{array}{c} 120 \\ -104 \end{array} ight.$	109 110	125 108	124 111	113 101				•••••											} 105
116	{	118 11 7	 103		120 119	 105	 104	$\frac{122}{121}$	 107	 106	124 123	109	126 125	128 127			130 129	131 1		$\begin{vmatrix} \\ 186 \end{vmatrix}$ 116
117	$\left\{ egin{array}{ccc} & 102 \end{array} ight.$	$\frac{116}{121}$	 101	106	125 123							•••••								::::: }117
118	103	$\frac{122}{116}$	107	101						•••••									•••	::::: }118
119	{ 104	$\frac{126}{123}$	111	108	116 127								•••••				•••••			::::::}119
120	{ 105	$\frac{124}{125}$	109	110	128 116												•••••			:::::: } 120
131 -	{;	$\frac{133}{132}$	4	3	135 134	₇	6	137 136	10	9	139 138	 13	141 140				145 144	 116		$\frac{148}{148}$ 131
132	{3	131 136	<u>1</u>	9	140 138												•••••		• • • • • • • • • • • • • • • • • • • •	$\dots \} 132$
133	{4	137 131	10	₁	139 141												•••••			} 133
134	{6	141 138	 16	12	131 142												•••••			} 134
135	{	139 140	 13	15	143 131							•••••					•••••			} 135
146	148 -147	150 149	152 151	154 153	156 155	158 157	160 159	$-162 \\ -161$	164 163	$^{166}_{-165}$	168 167	170 169	174 —173				 -146	186 185		$\begin{bmatrix} & 1 \\ - & 63 \end{bmatrix}$ 146
147 -	{ -146	153 151	149		159 157	 155	 — 156	164 163	 161	 —162	171 169	 167	177 175	183 181			148	 185	1 63	${144 \atop 0}$ 147

IN PHYSICAL ASTRONOMY.

Table I. (Continued.)

0	1	2	3	4	5	6	7	8	9	10	11	12	14	17	20	35	62	101	146	147	
148	146	154 152		 149		 156		166 164		-161		168	178 176	184 182			147	186	64 1	131 } 62 }	148
149	$\begin{bmatrix} 153 \\ -152 \end{bmatrix}$	161 146	147 164	165 148	167 173															}	- 149
150 <	$\begin{bmatrix} 154 \\ -151 \end{bmatrix}$	162 146		166 -147	168 174						•••••	•••••								::::: }	150
151		147 163	 146	 162	175 169							•••••		•••••				•••••		:::::}	151
$152\Big\{$		148 164	 146	 161	176 170													•••••		:::::}	152
$\boldsymbol{153} \Big\{$	149	165 147	161	 146					•••••				•••••						,	:::::}	153
$\boldsymbol{154} \Big\{$	150	166 148	 162	146	172 178															:::::}	154
	159 -158	i		1	- 1		- 1	3	- 1	1	- 1	ì		- 1	- 1					:::::}	155
156 {	160 -157	168 -173	176 169	172 177	180 146						•••••				:::	:::				::::: }	156
157 {		177 169	173	 -168	147 181										:::	:::		•••••		:::::}	157
158		178 170	174												:::	:::				::::: }	158
159 {	155	171 175	167												:::	:::			:::	:::::}	159
160 {	156	172 176	168	 173												:::				:::::}	160

	38	59	
1 -	{ 40 39	$\left. egin{array}{c} 61 \\ 60 \end{array} ight\}$	- 1

TABLE II.

Showing the arguments which, by their combination with the arguments 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 17, 20, 35, 62, 101, 146, 147, produce the arguments, 12, 3, &c. in the left hand column. This Table is formed from the preceding, by making the numbers in the left hand column in that Table change places with the rest. A full stop is placed after the figure where it does not occupy the same *cell* as in the preceding Table.

	0	1	2	3	4	5	6	7	8	9	10	11	12	14	17	20	35	62	101	146	147	
	1 {	0 131	3 4	2 132	133. - 2	6 7	5		9 10		 - 8	12 13	11	15 16	18 19			63 64	101 116	147 148	146 }	1
	2 { _	4. 3	0 8	- 9. 1	- 10. - 1	14 11	- 16. - 12	- 15. 13	2	 3	<u>4</u>	 _ 5	6	5 					•••	•••	::: }	2
	3 { _	132. 2	9 1		_ 131. _ 8	12 15	14	 11	<u>4</u>	2		7	5								::: }	3
	4 {	2 133	1 10	8 131	θ	16 13	11 		3		2	6		7							::: }	4
	5 { _	7. 6	- 14. 11	15. - 12	- 16. 13	0 17	- 18. 1	_ 19. _ 1				₂	3	₂	 5						::: }	5
	6 { _	134. - 5	12 16	14	ii	18 1		131. 17				<u>.</u>	2	3	7						¹	6
	7 {	5 135	15 13	11	 - 14	1 19	17 131					3		4	6						::: }	. 7
	8 { _	- 10. - 9	2 20	- 21. 4	- ²² .	26 23				"ï	i	14	16	11		2					::: }	8
	9 {	- 8	21 3	2	- ¹³² .	24 27			<u>.</u>		131	15		12		4]:::}	9
	10 {	8	$\begin{array}{c} 4 \\ 22 \end{array}$	20 133		28 25			1	 131		16		13		3					::: }	10
	11 { _	13. - 12	5 23	- 24. 7	25. - 6	2 29	4	3	- 14	 15	16		1	17 8	14					:::	::: }	- 11
	12 { _	ii	24 6	5	134. - 23	30 3	2		16	14		1		9 18	15						::: }	- 12
	13 {	11	7 25	23 135	5	4 31		2	15		14	1	1	19	16						::: }	- 13
	14 { _	16. - 15	26. - 5	- 27. 6	28. - 7	32 2	- 3	4	ii	12	13	- 17. 8	18. - 9		11						::: }	- 14
	15 { _	- 14	27 7	5	135. - 26	3 33		2	13	11		9 19	17	·	12					:::	}	15
	16 {	14	6 28	26 134	5	34 4					 11	18 10	8		13					:::	··· }	16
T. C.	17 { _	19. - 18	- 32. 29	33 - 30	- 34. 31	5 35	7	- 6				14	15	iï	0		- E	 		.::	}	17
	18 { _	- 17	30 34	32		36 6	- 5					16	14	12	1						}	18
	19 {	17	33 31		- 32	7 37		5				15		13	1			 		:::	}	19
-	20 {	22. - 21	8	10	- 9				2	 4	_ 3										}	20

Table II. (Continued.)

MICHELLA DA INCIDENCE DE LA COMPANSA DEL COMPANSA DE LA COMPANSA D		_ 1	. 1		0 1				- 1	1		1			1					1
1 1	2	3	4	5	6	7	8	9	10	11	12	14	17	20	35	62	101	146		
$21 \left\{ \begin{array}{c} \\ -20 \end{array} \right.$	9	8	•••••	•••		•••••	3	2	•••••		•••••	•••••	•••	ï	••••			•••	··· }	· .
$22 \left\{ \begin{array}{c} 20 \\ \dots \end{array} \right.$			8				4	•••••	2	···	•••••		•••	1		•••]]	22
$23 \left\{ \begin{array}{c} 25. \\ -24 \end{array} \right.$		 13	 - 12	8	10	_ 9	5	····. ₇	6		 4			:::	• • • •	•••]	23
$24 \left\{ \begin{array}{l} \\ - \ 23 \end{array} \right.$	12	11	•••••	 9	8		6	 5	•••••	 3	 - 2							•••	}	24
25 $\left\{\begin{array}{c}23\\\end{array}\right.$	13		11	10 		8	7		5	4			•••			•••]	brace 25
$26\left\{ -\frac{28}{27}\right\}$	14	 16	 15	 8	9		₅	6	₇			2			•••]	} 26
27 {	 15	 - 14		9		8		5				3	•••							} 27
$28 \left\{ \begin{array}{c} 26 \\ \dots \end{array} \right.$	16		14	 10	8		6		 5			4								28
$29 \left\{ \begin{array}{c} 31. \\ -30 \end{array} \right.$	17		 - 18	11 	13	 12				5	7		2							} 29
30 {		18. - 17		 12	 11						5		3							} 30
31 { 29	19		17	13		11				7			4							} 31
$32 \left\{ \begin{array}{c} 34. \\ -33 \end{array} \right.$		18	19	 14	_ 15	16						_ 5								} 32
33 {	19	17		15								1	3							33
$34 \left\{ \begin{array}{c} 32 \\ \dots \end{array} \right.$	18		17	16	14							6	·							34
$35 \left\{ \begin{array}{c} 37. \\ -36 \end{array} \right.$				17	19	18						1	5						1	35
36 {	•••••			 18									6		 1			1		} 36
37 {				19		17							7		1				1	} 37
38 { ::	20	22	21				8	10						2					1	38
39 {	21						9	8						3						39
40 { :::::			20				10							4			1		1	40
41 { :::::	23	25		20			11	13		8	10			5					1	} 41
42 { :::::				21			12				8			6			1		1	} 42
43 {	25		23	22			13		11	10				7					1	} 43
44 {	26		97				14					. 8							1	} 44
l	•••••	28	– 27	20	•••••			16	- 15					-5	•••					,

Table II. (Continued.)

0	1	2	3	4	5	6	7	8	9	10	11	12	14	17	20	35	62	101	146	147
45 {					21		·													::: } 45
1		27	- 26 	26				15	- 14	14	•••		10		6				•••	
1					22		•••				•••			•••					•••	} 46
47 {	•••••	29	31	_ 30	23				19	 	11			8					•••	::: } 47
48 $\Big\{$	•••••	30	29		24	:::	•••	18	 		12	ii		9			:::	•••	•••	} 48
49 {	•••••	31		29	25			19		17	13			10					•••	} 49
50 {	•••••	32	34	33	26			 _ 17	18	19			14	 8						} 50
51 {	••••	 33			27				17				15	9		•••			•••	} 51
i `	•••••	34		32	28			18					16	10		•••				} 52
•	•••••	35	37	36	29		•••				17	19		11		2			•••	··· } 53
1	•••••																			} 54
		37	- 35		30 31	•••					18 19	— 17. 		12 13	1	3 4		•••		
	*****				•••••	•••	•••			•••••						•••	•••			_
1	•••••		36	_ 37	32	•••	•••	•••••	•••••	•••••	•••	•••••	- 17	14 15	•••	2 3	•••	•••	•••	::: } 56
1	•••••		35		33	•••	•••	•••••	•••••	•••••	•••		19				•••	••••	•••	::: } 57
58 $\Big\{$	••••	36		35. 35	34			•••••		•••••	•••			 16		4	•••		•••	} 58
$59\ \Big\{$	•••••	•••••			35	•••	•••	•••••			•••			17	•••	5	•••			} 59
60 {	•••••	•••••	•••••		36			•••••		•••••	•••			 18		6	•••		 	} 60
$61\ \Big\{$	•••••				37			•••••					•••••	19 		7	•••	,	•••	} 61
62 {	64. - 63	66. 65	68. - 67	70. - 69	72. - 71			•••••		•••••			•••••	•••		. 1			146	₁₄₈ } 62
1	 - 62	67 69	65	66	73 75			•••••	••••				•••••				 1		 147	-146 $\left.\begin{array}{c} \\ 63 \end{array}\right.$
1	62	68 70	66	- 65	74 76				•••••	•••••	•••		•••••			•••	1	••••	148	} 64
1	69. - 68		63		76				•••••	•••••					,	••••			•••	} 65
1				- 64		••••	•••	•••••			•••			:		•••	2		•••	5
66 {			64	63		•••	•••	•••••	••••	•••••	•••			. ••		•••	•••	•••	•••	} 66
i -	- 66	63		•	•••••			•••••				•••••	, , , , , ,	•••		•••	3		•••	::: } 67
68 $\{$	- 65	64	62	•••••				•••••			•••			•••	•••		3	•••	•••	::: } 68

TABLE II. (Continued.)

	1	2	3	4	5	6	7	8	9	10	11	12	14	17	20	35	62	10	146	147
69 {	65	63							9	10			ļ				1	-	\vdash	
	•••••		•••	- 62			•••••								•••		4			} ⁰⁹
`			•••											:::		:::	4		:::] ::: } 70
71 {_	75. - 74		•••		- 62	63								:::	:::		5		:::]::: } 71
72 {_	76. - 73	:::		•••••	62	64	- 63							•••			5	:::		::: } 72
73 { _	 - 72	, 	•••	•••••	63	- 62											6] ::: } 73
74 { _	- 71			•••••	 64	62										•••	6		:::	} 74
75 { .	71	:::			63	•••••	- 62									•••	₇			::: } 75
76 { .	72				64	•••••	62									•••		•••	 	} 76
77 {		65	69. 65	 - 68	•••••			 - 62	 63	 64							 8			} 77 _.
78 { :		66	70	 67		•••••	•••••		64	 - 63							8		1 1	::: } 7 8
79 {		67	 -66		•••••			 63	 - 62									•••		} 79
80 { ;		 68						 64	62	•••••	•••••			:::			9	 		} 80
81 { :	- 1	- 1		65				63		 - 62	•••••			:::			 10			::: } 81
82 { :		- 1		66				64			•••••						10			} 82
83 { :	1	71	75	 - 74	65						62	 63					ii		:::	} 83
84 { ::	1	72	- 1	 - 73	66						62						11			::: } 84
85 { ::	1	- 1		- 1	67							 - 62					 12			::: } 85
86 { ::		1	1	1	68							1					12			::: } 86
87 { ::		75	- 1	71	69						63						13		1	} 87
88 { ::		76	- 1	72	70						64						13		1	} 88
89 { ::	i	- 1	- 1	7.0																} 89
90 { ::	- 1	- 1		- 1	65								62				14		1	} 90
					66 67															} 91
91 { ::		- 1	- 1		68								- 00	•••			15 15			::: } 92
92 { ::		76																		} ⁹²

Table II. (Continued.)

0	1	2	3	4	5	6	7	8	9	10	11	12	14	17	20	35	62	101	146	147	
93 {		73 			col								63 				 16			}	93
$94\ \Big\{$		74			70						:::		64 	•••••			16 			::: }	94
$95\ \Big\{$					71									- 62		•••	 17			}	- 95
96 {					72									62			17 			 	- 96
97 {	•••••				73									 63			 18			}	97
98 {					74									64			18]	98
99 -	[75 						•••			63	:::		19]	99
100 {					76 		•••••		•••••					64	:::		19				} 100
101	116. -101	102 103	117. -102	118. 103	104 105										:::						} 101
102 -	$\begin{bmatrix} 117. \\ -103 \end{bmatrix}$	101		116														_ 3			brace 102
103 -	$\begin{cases} 118. \\ -102 \end{cases}$	101	116															2 4			} 103
104 -	$\left\{ \begin{array}{c} 119. \\ -105 \end{array} \right.$				101		116											- 5	 		$\Big\} 104$
105 -	$\left\{ egin{array}{l} 120. \\ -104 \end{array} \right.$				101 	116									:::		:::				brace 105
106	{	102		117				101		116								- 8	9. 3		} 10 6
107	{	103	118					101	116		:::			1	:::	\		10	3		}107
108	{	104		119	102						101	_101			1	1		- 13	2 1		}108
109	{	105	120		103						101 	1110		1	:::	1	1	13	1 3		
110	{	105		120	102							1	1207		1	1	1	- 1	5 4		$\Big\}110$
111	{ :::::	104	119	105	103							1	1	1	1		1	1 1	4 6		}111
112	{ :::::	:::			104			:::					1	101			1		7		}112
	{ :	1 .			105							1	1	1			- 1	. 1	7	1	}113
114	{ :	:::						:::				1	Į	į.	1	- 1	l - a -		i		}114
115	{										1		1	1	1		- 1	1 6	$\begin{bmatrix} 2 \\ 4 \end{bmatrix} \dots$: :::	}115
116	{	117 118	103	1				1		1	1	i	1	1	- 1	1	1	1 19	1		}116

Table II. (Continued.)

0	1	2	3	4	5	6	7	8	9	10	11	12	14	17	20	35	62	101	146	147
117 $\left\{$	102	116	101															3		::: }117
118 $\Big\{$	103	116		101									•••••					4		}118
119 {	104				 116	101										•••••		6		::: }119
$120\bigl\{$	105				116		101				•••••				•••••			7		::: }120
121 $\Big\{$	•••••		102					 116	101							•••••		9		::: }121
122 $\Big\{$	•••••	118		103				116				·····		••••				10		::: }122
1 .	•••••										116	101			•••••			12		}123
$124 \Big\{$		120		105	118						116		•••••					13	`	} 124
•											•••••		116					15		
1																		16		} 126
1					1				-					116				18		} 127
ł	•••••													116	1			19		} 128
1																	116	63		::: }129
1																	116	64		} 130
	1			3		7	6		10			13						116		$\begin{bmatrix} 148 \\ \end{bmatrix}$ 131
$132igg\{$	3	 131	1	9			12		4		•••••	7								} 132
133 $\Big\{$	4	131						- 1				1								} 133
	6			12	i i							İ			1			1		} 134
١.	7		13	15		19														} 135
$136\bigl\{$	9	 132	3	21				 131	1			15								} 136
$137\bigl\{$		133		4				131		1										} 137
1	12		6		132	3	•••••		16		 131	1								::: }138
139 {		135		7	133		4			15	131									 ::: }139
140 {		135	7		E .		3		13			19							1	::: }140

Table II. (Continued.)

0	1	2	3	4	5	6	7	8	9	10	11	12	14	17	62	101	146	147
141 {		134		6	133				•••••	12	•••	10	131 					}141
$142 \Big\{$	18				 134	6			•••••			16		 131		:::		····· }142
143	19		•••••		135		7							131				}143
144 {															131		,	147
$145\Bigl\{$		•••••				•••••									131	:::		::::: }145
$146 \bigl\{$	148. 147	150. —149	152. 151	154. 153	156. 155	•••••									 146		62	$\begin{bmatrix} -63. \\ 1 \end{bmatrix}$ 146
147 $\Big\{$	 146	151 153	149	 -150	157 159								:::		148		63 1	:::::: }147
148 {	146	152 154	150	 -149	158 160										147		1 64	$\left[\begin{array}{c} 62\\131 \end{array}\right]$ 148
$149 \Big\{$	153. —152	 -146	147				•••••						·				2	
150 {	154. —151	146	148.						•••••								2	····· ₄ }150
151 {		147	 146														3	
$152 \Big\{$	 —149	148	146 		•••••				•••••								3	:::::: }152
$153 \Big\{$	149	147															 4	² }153
$\boldsymbol{154} \Big\{$	150	148	•••••	146		•••••						:::	:::				4	::::: }154
155 {	159. —158				 146	147	 148										 5	
$\boldsymbol{156} \Big\{$	160. —157				146	 148	 147					:::					5	····; }156
157 {	 -156	•••••	•••••		 147	 146								•••••			6	
$158 \Big\{$	 —155				 148	146			•••••					•••••			6	::::: } 158
159 {	155	•••••	•••••		147	•••••											7	$\begin{bmatrix} 5 \\ 159 \end{bmatrix}$
160 {	156	•••••			148	•••••	146										7	::::: }160
161 {	•••••	149	 153	 -152		•••••		 146	147	 148		:::					 8	
162 {			 154	 151				146	148	 -147						:::	8	$\begin{bmatrix} \\ 10 \end{bmatrix}$ 162
163		151	 150	•••••		•••••	•••••	 147	146	•••••						:::	9	
$164 \Bigl\{$		152	 -149					147 148	146						•••••		9	::::: }164

TABLE II. (Continued.)

0	1	2	3	4	5	6	7	8	9	10	11	12	14	17	62	101	146	147
165 {	•••	153		149													10	8 } 165
166 {		154		150				148		146							10] 166
167 {	•••	155	159		149	•••••					 146	147					iï	$\begin{bmatrix} \\ -12 \end{bmatrix}$ 167
168 {	•••	156 	160	 —157	150 				•••••		146	148					11	}168
169 {		 157	 156		 151	•••••	•••••				 147	 146				•••••	12	}169
170 {	•••	 158	 —155		152	•••••		•••••		•••••	 148	146				•••••	12 	::::: }170
171 {		159 			153				•••••		147				••••	•••••	 13	}171
172 {		160	•••••	156	154	•••••	•••••		•••••	•••••	148	•••••		•••••	•••	;	13 	} 172
173 {			157	 -160	149		•••••			•••••	•••••	•	 —146			•••••	 14	
174 {	•••	 —155	 158		150	•••••	•••••					•••••	146	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	14 	$\frac{1}{16}$ } 174
$175 \Big\{$	•••	 159	155	••••	151	•••••				•••••	•••••		 147	•••••		•••••	 15	$\frac{1}{14}$ } 175
176 {		 160	156 		152		•••••						148		•••	•••••	15 	::::: }176
177 {		157		156	153							•••••	147	·····		•••••	 16	
178 {		158 		 155	154	•••••							148	•••••		•••••	16 	::::: }178
179 {					155			•••••					•••••	 -146		•••••	 17	<u></u> }179
180 {					156		•••••			•••••		•••••	•••••			•••••	17 	··· }180
181 _. {	•••				157		•••••	•••••		•••••		•••••	•••••	147	:::	•••••		181
182{					158		•••••					•••••	•••••	148			18 	} 10%
183 {					159									147		•••••	 19	}183
184 {					160							······································			:::	•••••	19 	}184
185 {												•••••			:::	147. —146		::::: }185
184 { 185 { 186 {												•••••	•••••			146 148		::::: }186

	38	59			38	59	
39 {	i		} 39	60 {		i	60
40 {	1		} 40	61 {	•••••	1	61

Table II. may be used in forming the developments required in the method employed by MM. Laplace and Damoiseau; for this purpose it is only necessary to make $t = \lambda' - \lambda_i$ instead of $n t - n_i t$

$$x = c \lambda' - \varpi . . . cnt - \varpi$$

$$z = c_i \lambda_i - \varpi_i . . . c_i n_i t - \varpi_i$$
and
$$y = g \lambda' - \nu . . . gnt - \nu$$

The notation throughout is the same as that used Phil. Trans. 1830, p. 328, with the exception of the indices of the arguments.

In the elliptic movement;

$$a^{5}r^{-5} = 1 + 5e^{2}\left(1 + \frac{21}{8}e^{2}\right) + 5e\left(1 + \frac{27}{8}e^{2}\right)\cos x + 10e^{2}\left(1 + \frac{31}{12}e^{2}\right)\cos 2x + \frac{145}{8}e^{3}\cos 3x + \frac{745}{48}e^{4}\cos 4x$$

$$a^4 r^{-4} = 1 + 3 e^2 + 4 e \cos x + 7 e^2 \cos 2 x$$

$$a^{3}r^{-3} = 1 + \frac{3}{2}e^{2}\left(1 + \frac{5}{4}e^{2}\right) + 3e\left(1 + \frac{9}{8}e^{2}\right)\cos x + \frac{9}{2}e^{2}\left(1 + \frac{7}{9}e^{2}\right)\cos 2x + \frac{53}{8}e^{3}\cos 3x + \frac{77}{8}e^{4}\cos 4x$$

$$a^{2}r^{-2} = 1 + \frac{e^{2}}{2}\left(1 + \frac{3}{4}e^{2}\right) + 2e\left(1 + \frac{3}{8}e^{2}\right)\cos x + \frac{5}{2}e^{2}\left(1 + \frac{2}{15}e^{2}\right)\cos 2x + \frac{13}{4}e^{3}\cos 3x + \frac{103}{24}e^{4}\cos 4x$$

$$a r^{-1} = 1 + e \left(1 - \frac{e^2}{8} \right) \cos x + e^2 \left(1 - \frac{e^2}{3} \right) \cos 2x + \frac{9}{8} e^3 \cos 3x + \frac{4}{3} e^4 \cos 4x$$

$$\frac{r}{a} = 1 + \frac{e^2}{2} - e \left(1 - \frac{3}{8} e^2 \right) \cos x - \frac{e^2}{2} \left(1 - \frac{2}{3} e^2 \right) \cos 2x - \frac{3}{8} e^3 \cos 3x - \frac{e^4}{3} \cos 4x$$

$$\frac{r^2}{a^2} = 1 + \frac{3}{2} e^2 - 2 e \left(1 - \frac{e^2}{8} \right) \cos x - \frac{e^2}{2} \left(1 - \frac{e^2}{3} \right) \cos 2x - \frac{e^3}{4} \cos 3x - \frac{e^4}{6} \cos 4x$$

$$\frac{r^3}{a^3} = 1 + 3e^2\left(1 + \frac{e^2}{8}\right) - 3e\left(1 + \frac{3}{8}e^2\right)\cos x - \frac{5}{8}e^4\cos 2x + \frac{e^3}{8}\cos 3x + \frac{e^4}{8}\cos 4x$$

$$\frac{r^4}{a^4} = 1 + 5 e^2 - 4 e \cos x + e^2 \cos 2 x$$

$$\frac{d}{r} = r_0$$
+ $r_1 \cos 2t$
+ $e r_2 \cos x$
+ $e r_3 \cos (2t - x)$
+ $e r_4 \cos (2t + x)$
+ $e_1 r_5 \cos z$
+ $e_1 r_6 \cos (2t - z)$ + &c. &c.

$$\lambda = nt$$

$$+ \lambda_1 \cos 2t$$

$$+ e \lambda_2 \cos x$$

$$+ e \lambda_3 \cos (2t - x)$$

$$+ e \lambda_4 \cos (2t + x)$$

$$+ e_1 \lambda_5 \cos x \&c. \&c.$$

The quantities λ correspond to the quantities b in M. Damoiseau's notation.

$$\begin{aligned} s &= \gamma \, s_{145} \sin y \\ &+ \gamma \, s_{147} \sin \left(2 \, t - y \right) \\ &+ \gamma \, s_{148} \sin \left(2 \, t + y \right) \\ &+ e \, \gamma \, s_{149} \sin \left(x - y \right) \, \&c. \, \&c. \\ \gamma &= \tan i \, \\ R &= m_i \left\{ \frac{r^i \, r_i \cos \left(\lambda - \lambda_i \right)}{r_i^3} - \frac{1}{8} \, \frac{\left\{ 2 \, r^i \, r_i \cos \left(\lambda^i - \lambda_i \right) + r_i^2 \right\}^{\frac{1}{2}}}{r_i^3} \right\} \\ &= m_i \left\{ -\frac{1}{r_i} + \frac{r^2}{2 \, r_i^3} - \frac{3}{8} \, \frac{\left\{ 2 \, r^i \, r_i \cos \left(\lambda^i - \lambda_i \right) - r^2 \right\}^3}{r_i^3} - \frac{15}{48} \, \frac{\left\{ 2 \, r^i \, r_i \cos \left(\lambda^i - \lambda_i \right) - r^2 \right\}^3}{r_i^3} \right\} \\ &= m_i \left\{ -\frac{1}{r_i} + \frac{r^3}{2 \, r_i^3} - \frac{3}{2} \, \frac{r^3 \, r_i^3}{r_i^3} \cos \left(\lambda^i - \lambda_i \right)^2 + \frac{3}{2} \, \frac{r^2 \, r^3 \, r_i}{r_i^5} \cos \left(\lambda - \lambda_i \right) - \frac{5}{2} \, \frac{r^3 \, r_i^3}{r_i^7} \cos \left(\lambda^i - \lambda_i \right)^3 \right\} \\ &= m_i \left\{ -\frac{1}{r_i} - \frac{r^3}{4 \, r_i^3} \left\{ 1 + 3 \cos \left(2 \, \lambda^i - 2 \, \lambda_i \right) - 2 \, s^2 \right\} \right. \\ &- \frac{r^{33}}{8 \, r_i^4} \left\{ 3 \left(1 - 4 \, s^3 \right) \cos \left(\lambda^i - \lambda_i \right) + 5 \cos \left(3 \, \lambda^i - 3 \, \lambda_i \right) \right\} \\ &\hat{r}^i \, r_i^{\cos} \left(\lambda^i - \lambda_i \right) = r \, r_i \left\{ \cos^2 \frac{i}{2} \sin \left(\lambda - \lambda_i \right) + \sin^3 \frac{i}{2} \cos \left(\lambda + \lambda_i - 2 \, r \right) \right\} \\ &= * a \, a_i \cos^2 \frac{i}{2} \left\{ \left(1 - \frac{e^2}{2} - \frac{e^4}{64} \right) \left(1 - \frac{e^3}{2} - \frac{e^4}{64} \right) \cos \left(t + \lambda_i - 2 \, r \right) \right\} \\ &+ \frac{e^3}{2} \cos \left(t + 3 \, x \right) + \frac{125}{384} \, e^4 \cos \left(t + 4 \, x \right) + \frac{3}{8} \, e^2 \left(1 - e^2 \right) \left(1 - \frac{e^3}{2} \right) \frac{\cos \left(t + 2 \, x \right)}{\sin \left(t - 2 \, x \right)} \\ &+ \frac{e^3}{24} \sin \left(t - 3 \, x \right) + \frac{3}{128} \, e^2 \cos \left(t + 4 \, x \right) + \frac{e^3}{8} \left(1 + \frac{e^3}{3} \right) \left(1 - \frac{e^3}{2} \right) \frac{\cos \left(t + 2 \, x \right)}{\sin \left(t + 2 \, x \right)} \\ &+ \frac{9}{4} \, e \, e_i \cos \left(t - 2 \, x + z \right) - \frac{e^3}{4} \, e^i \left(1 - \frac{3}{4} \, e^2 \right) \sin \left(t - 2 \, x + z \right) \\ &- \frac{9}{16} \, e^2 \, e_i \cos \left(t + 2 \, x + z \right) - \frac{e^3}{2} \, \frac{e^3}{\sin} \left(t + 3 \, x + z \right) - \frac{3}{16} \, e^2 \, e_i \sin \left(t - 2 \, x + z \right) \end{aligned}$$

^{*} See Phil. Trans. 1830, p. 343.

$$-\frac{e^3 e_i \cos (t-3 x+z)+\frac{e_i}{2}\left(1-\frac{3}{4}e_i^2\right)\left(1-\frac{e^2}{2}\right)\cos (t-z)}{16\sin (t-z)}$$

$$-\frac{3}{4}e_i\left(1-\frac{3}{4}e_i^2\right)\sin (t-x-z)$$

$$+\frac{e_i}{4}\left(1-\frac{3}{4}e^3\right)\left(1-\frac{3}{4}e_i^3\right)\sin (t-x-z)$$

$$+\frac{e_i}{6}\sin (t+3 x-z)+\frac{e^3 e_i}{16\sin (t+3 x-z)}+\frac{3}{16}e^3 e_i\cos (t+2 x-z)$$

$$+\frac{e^3 e_i\cos (t+3 x-z)+\frac{e^3 e_i\cos (t-2 x-z)+\frac{e^3 e_i\cos (t-3 x-z)}{48\sin (t-3 x-z)}$$

$$+\frac{3}{8}e_i^3\left(1-e_i^3\right)\left(1-\frac{e^3}{2}\right)\sin (t-2 z)-\frac{9}{16}e_i^3\cos (t-x-2 z)$$

$$+\frac{3}{16}e_i^3\cos (t+x-2 z)+\frac{9}{64}e^3 e_i^3\cos (t+2 x-2 z)$$

$$+\frac{3}{16}e_i^3\cos (t+x-2 z)+\frac{9}{64}e^3 e_i^3\cos (t-3 z)-\frac{e_i^3\cos (t-x-3 z)}{2\sin (t-x-3 z)}$$

$$+\frac{e_i^3}{6\sin (t+x-3 z)+\frac{125}{384}e_i^3\sin (t-3 z)-\frac{e_i^3\cos (t-x-3 z)}{2\sin (t-x-3 z)}$$

$$+\frac{e_i^3\cos (t+x-3 z)+\frac{125}{364}e_i^3\sin (t-2 z)$$

$$+\frac{e_i^3\cos (t+x-3 z)+\frac{125}{364}e_i^3\sin (t-2 z)$$

$$+\frac{e_i^3\cos (t+x-2 z)+\frac{3}{4}e_i^3\cos (t+2 z)-\frac{3}{16}e_i^3\cos (t-x+2 z)$$

$$+\frac{e_i^3\cos (t+x+2 z)+\frac{3}{64}e_i^3\cos (t+2 x+2 z)+\frac{e_i^3\cos (t-x+2 z)}{64\sin (t-2 x+2 z)}$$

$$+\frac{e_i^3\cos (t+x-2 z)+\frac{3}{4}e_i^3\cos (t-x+2 z)+\frac{e_i^3\cos (t-x+2 z)}{48\sin (t-x+2 z)}$$

$$+\frac{e_i^3\cos (t+x-2 z)+\frac{3}{64}e_i^3\cos (t-x+2 z)+\frac{e_i^3\cos (t-x+2 z)}{64\sin (t-x+3 z)}$$

$$+\frac{3}{128}e_i^3\cos (t+3 z)-\frac{e_i^3\cos (t-x+2 z)+\frac{e_i^3\cos (t-x+2 z)}{48\sin (t-x+2 z)}$$

$$+\frac{3}{48}e_i^3\cos (t+3 z)-\frac{e_i^3\cos (t-x+2 z)+\frac{e_i^3\cos (t-x+2 z)}{48\sin (t-x+2 z)}$$

$$+\frac{3}{48}e_i^3\cos (t-x+2 z)+\frac{3}{28}e_i^3\cos (t-x+2 z)+\frac{e_i^3\cos (t-x+2 z)}{2\sin (t-x+2 z)}$$

$$+\frac{3}{48}e_i^3\cos (t-x+2 z)+\frac{3}{48}e_i^3\cos (t-x+2 z)+\frac{e_i^3\cos (t-x+2 z)}{2\sin (t-x+2 z)}$$

$$+\frac{9}{4}e_i^3\cos (t-x+2 z)+\frac{e_i^3\cos (t-x+2 z)}{8\sin (t-x+2 z)}+\frac{e_i^3\cos (t-x+2 z)}{2\sin (t-x+2 z)}$$

$$+\frac{9}{4}e_i^3\cos (t-x+2 z)+\frac{e_i^3\cos (t-x+2 z)}{8\sin (t-x+2 z)}+\frac{e_i^3\cos (t-x+2 z)}{2\sin (t-x+2 z)}$$

$$+\frac{9}{4}e_i^3\cos (t-x+2 z)+\frac{9}{4}e_i^3\cos (t-x+2 z)+\frac{e_i^3\cos (t-x+2 z)}{2\sin (t-x+2 z)}$$

$$+\frac{9}{4}e_i^3\cos (t-x+2 z)+\frac{1}{4}e_i^3\cos (t-x+2 z)$$

$$+\frac{1}{4}e_i^3\cos (t-x+2 z)+\frac{1}{4}e_i^3\cos (t-x+2 z)$$

$$+\frac{1}{4}e_i$$

$$\begin{split} &+\left\{\frac{1}{2}+\left\{-\frac{1}{2}-\frac{3}{4}\right\}\left(e^{2}+e_{i}^{2}\right)+\left\{\frac{1}{2}+\frac{3}{4}+\frac{3}{4}+\frac{9}{16}+\frac{9}{16}\right\}e^{2}e_{i}^{2}\\ &+\left\{\frac{7}{64}+\frac{9}{16}+\frac{3}{64}\right\}\left(e^{4}+e_{i}^{4}\right)\right\}\cos2t\\ &-\left\{\left\{\frac{7}{64}+\frac{9}{16}+\frac{3}{64}\right\}\left(e^{4}+e_{i}^{4}\right)\right\}\cos2t\\ &+\left\{-\frac{3}{2}+\frac{1}{2}+\left\{\frac{3}{4}-\frac{5}{8}-\frac{3}{16}+\frac{3}{16}\right\}e^{2}\\ &+\left\{\frac{3}{2}-\frac{1}{2}-\frac{27}{8}+\frac{9}{8}-\frac{3}{8}+\frac{1}{8}\right\}e_{i}^{2}\right\}e\cosx\\ &+\left\{\frac{3}{2}+\left\{\frac{3}{4}+\frac{1}{16}\right\}e^{2}+\left\{\frac{3}{2}+\frac{9}{8}+\frac{9}{8}\right\}e_{i}^{2}\right\}e\cos\left(2t-x\right)\\ &-\left[3\right]\left[7\right]\\ &+\left\{-\frac{1}{2}+\left\{\frac{5}{8}-\frac{9}{16}\right\}e^{2}+\left\{-\frac{1}{2}-\frac{3}{8}-\frac{3}{8}\right\}e_{i}^{2}\right\}e\cos\left(2t+x\right)\\ &-\left[4\right]\left[6\right]\\ &+\left\{\frac{3}{8}+\frac{1}{8}-\frac{3}{4}+\left\{-\frac{9}{16}-\frac{1}{48}+\frac{9}{16}-\frac{1}{16}+\frac{1}{6}\right\}e^{2}\\ &+\left\{-\frac{3}{8}-\frac{1}{8}+\frac{3}{4}+\frac{27}{32}+\frac{9}{32}-\frac{27}{16}+\frac{3}{32}+\frac{1}{32}-\frac{3}{16}\right\}e_{i}^{2}\right\}e^{2}\cos2x\\ &+\left\{\frac{9}{8}+\frac{1}{8}+\left\{-\frac{1}{48}+\frac{1}{48}\right\}e^{2}\right.\\ &+\left\{-\frac{9}{8}-\frac{1}{8}-\frac{3}{32}-\frac{27}{16}-\frac{3}{32}\right\}e_{i}^{2}\right\}e^{2}\cos\left(2t-2x\right)\\ &+\left\{\frac{1}{8}+\frac{3}{8}+\left\{-\frac{3}{16}-\frac{9}{16}-\frac{1}{2}\right\}e^{2}\\ &+\left\{-\frac{1}{8}-\frac{3}{8}-\frac{9}{32}-\frac{3}{16}-\frac{9}{32}\right\}e_{i}^{2}\right\}e^{2}\cos\left(2t+2x\right)\\ &-\left[10\right]\left[18\right]\\ &+\left\{-\frac{3}{4}-\frac{3}{4}+\frac{9}{4}+\frac{1}{4}+\left\{\frac{15}{16}+\frac{3}{8}-\frac{9}{8}-\frac{3}{32}-\frac{9}{32}-\frac{5}{16}\\ &+\frac{3}{32}+\frac{9}{32}\right\}\left(e^{2}+e_{i}^{2}\right)\right\}e^{2}\cos\left(x+z\right)\\ &+\frac{3}{32}+\frac{9}{32}\right\}\left(e^{2}+e_{i}^{2}\right)\right\}e^{2}\cos\left(x+z\right)\\ &+\frac{3}{32}+\frac{9}{32}\right\}\left(e^{2}+e_{i}^{2}\right)\right\}e^{2}\cos\left(x+z\right)\\ &+\frac{3}{32}+\frac{9}{32}\right\}\left(e^{2}+e_{i}^{2}\right)\right\}e^{2}\cos\left(x+z\right)\\ &+\frac{3}{32}+\frac{9}{32}\right\{\left(e^{2}+e_{i}^{2}\right)\right\}e^{2}\cos\left(x+z\right)\\ &+\frac{3}{32}+\frac{9}{32}\right\{\left(e^{2}+e_{i}^{2}\right)\right\}e^{2}\cos\left(x+z\right)\\ &+\frac{3}{32}+\frac{9}{32}\right\{\left(e^{2}+e_{i}^{2}\right)\right\}e^{2}\cos\left(x+z\right)\\ &+\frac{3}{32}+\frac{9}{32}\right\{\left(e^{2}+e_{i}^{2}\right)\right\}e^{2}\cos\left(x+z\right)\\ &+\frac{3}{32}+\frac{9}{32}\right\{\left(e^{2}+e_{i}^{2}\right)\right\}e^{2}\cos\left(x+z\right)\\ &+\frac{3}{32}+\frac{9}{32}\right\{\left(e^{2}+e_{i}^{2}\right)\right\}e^{2}\cos\left(x+z\right)\\ &+\frac{3}{32}+\frac{9}{32}\left(e^{2}+e_{i}^{2}\right)\right\}e^{2}\cos\left(x+z\right)\\ &+\frac{3}{32}+\frac{9}{32}\left(e^{2}+e_{i}^{2}\right)\right\}e^{2}\cos\left(x+z\right)\\ &+\frac{3}{32}+\frac{9}{32}\left(e^{2}+e_{i}^{2}\right)\left(e^{2}+e_{i}^{2}\right)\left(e^{2}+e_{i}^{2}\right)\left(e^{2}+e_{i}^{2}\right)\left(e^{2}+e_{i}^{2}\right)\left(e^{2}+e_{i}^{2}\right)\left(e^{2}+e_{i}^{2}\right)\left(e^{2}+e_{i}^{2}\right)\left(e^{2}+e_{i}^{2}\right)\left(e^{2}+e_{i}^{2}\right)\left(e^{2}+e_{i}^{2}\right)$$

^{*} The coefficient of argument 5 being the same, e and e_i changing places, that coefficient is not written down, in order to avoid useless repetition.

$$+ \left\{ -\frac{3}{4} - \frac{3}{4} + \left\{ \frac{3}{8} + \frac{3}{8} + \frac{1}{32} + \frac{1}{32} \right\} e^{2} \right.$$

$$+ \left\{ \frac{15}{16} + \frac{15}{16} + \frac{27}{32} + \frac{27}{32} \right\} e^{2} \right\} e^{2} e^{2} \cos (2t - x - z)$$

$$[12] [13]$$

$$+ \left\{ \frac{9}{4} + \frac{1}{4} - \frac{3}{4} - \frac{3}{4} + \left\{ -\frac{9}{8} - \frac{5}{16} + \frac{9}{32} + \frac{3}{8} + \frac{15}{16} + \frac{3}{32} - \frac{9}{32} - \frac{3}{32} \right\} (e^{2} + e^{2}) \right\} e^{2} e^{2} \cos (x - x)$$

$$[14]$$

$$+ \left\{ \frac{9}{4} + \frac{9}{4} + \left\{ -\frac{9}{8} - \frac{9}{8} - \frac{3}{32} - \frac{3}{32} \right\} (e^{2} + e^{2}) \right\} e^{2} e^{2} \cos (2t - x + z)$$

$$+ \left\{ \frac{1}{4} + \frac{1}{4} + \left\{ -\frac{5}{16} - \frac{9}{32} - \frac{5}{16} - \frac{9}{32} \right\} (e^{2} + e^{2}) \right\} \cos (2t + x - z)$$

$$+ \left\{ \frac{1}{3} + \frac{1}{24} - \frac{9}{16} + \frac{1}{16} \right\} e^{2} \cos 3x$$

$$[20] [35]$$

$$+ \left\{ \frac{1}{3} + \frac{3}{16} \right\} e^{3} \cos (2t - 3x)$$

$$[21] [37]$$

$$+ \left\{ \frac{1}{3} + \frac{3}{16} \right\} e^{3} \cos (2t - 3x)$$

$$[22] [36]$$

$$+ \left\{ -\frac{9}{16} + \frac{1}{16} + \frac{9}{8} - \frac{3}{8} + \frac{3}{16} - \frac{3}{16} \right\} e^{2} e^{2} \cos (2x + z)$$

$$[24] [31]$$

$$+ \left\{ -\frac{9}{16} - \frac{3}{8} - \frac{9}{16} \right\} e^{2} e^{2} \cos (2t - 2x - z)$$

$$[24] [31]$$

$$+ \left\{ -\frac{3}{16} + \frac{3}{16} - \frac{3}{8} + \frac{9}{8} - \frac{9}{16} + \frac{1}{16} \right\} e^{3} e^{2} e^{2} \cos (2x - z)$$

$$+ \left\{ -\frac{3}{16} + \frac{3}{16} - \frac{3}{8} + \frac{9}{8} - \frac{9}{16} + \frac{1}{16} \right\} e^{3} e^{2} e^{2} \cos (2x - z)$$

$$+ \left\{ -\frac{3}{16} + \frac{3}{16} - \frac{3}{8} + \frac{9}{8} - \frac{9}{16} + \frac{1}{16} \right\} e^{3} e^{2} \cos (2x - z)$$

$$+ \left\{ -\frac{3}{16} + \frac{3}{8} + \frac{3}{16} \right\} e^{2} e^{2} \cos (2t + 2x + z)$$

$$[27] [33]$$

$$+ \left\{ \frac{3}{16} + \frac{1}{8} + \frac{3}{16} \right\} e^{2} e^{2} \cos (2t + 2x - z)$$

$$[28] [34]$$

$$+ \left\{ \frac{3}{384} + \frac{3}{128} - \frac{1}{2} + \frac{1}{48} + \frac{3}{64} \right\} e^{4} \cos 4x$$

$$[28] [50]$$

$$+ \left\{ \frac{1}{128} + \frac{3}{128} - \frac{1}{16} \right\} e^4 \cos(2t - 4x)$$

$$[39] [61]$$

$$+ \left\{ \frac{9}{128} + \frac{125}{384} + \frac{1}{6} \right\} e^4 \cos(2t + 4x)$$

$$[40] [60]$$

$$+ \left\{ -\frac{1}{2} + \frac{1}{48} + \frac{27}{32} + \frac{1}{32} - \frac{9}{32} + \frac{1}{6} - \frac{3}{32} - \frac{1}{16} \right\} e^3 \cos(3x + z)$$

$$[41] [53]$$

$$+ \left\{ \frac{1}{48} - \frac{3}{32} - \frac{3}{32} + \frac{1}{48} \right\} e^3 e_i \cos(2t - 3x - z)$$

$$[42] [55]$$

$$+ \left\{ -\frac{1}{2} - \frac{9}{32} - \frac{9}{32} - \frac{1}{2} \right\} e^3 e_i \cos(2t + 3x + z)$$

$$[43] [54]$$

$$+ \left\{ -\frac{1}{16} + \frac{1}{6} - \frac{9}{32} - \frac{3}{32} + \frac{27}{32} - \frac{1}{2} + \frac{1}{32} + \frac{1}{48} \right\} e^3 e_i \cos(3x - z)$$

$$[44] [56]$$

$$+ \left\{ -\frac{1}{16} + \frac{9}{32} + \frac{9}{32} - \frac{1}{16} \right\} e^3 e_i \cos(2t - 3x + z)$$

$$[46] [57]$$

$$+ \left\{ \frac{1}{6} + \frac{3}{32} + \frac{3}{32} + \frac{1}{6} \right\} e^3 e_i \cos(2t + 3x - z)$$

$$[46] [58]$$

$$+ \left\{ \frac{3}{64} + \frac{3}{64} - \frac{3}{32} - \frac{9}{32} + \frac{9}{64} + \frac{1}{64} - \frac{3}{32} + \frac{9}{16} - \frac{9}{32} \right\} e^3 e_i^3 \cos(2x + 2x)$$

$$+ \left\{ \frac{9}{32} + \frac{3}{64} + \frac{27}{32} + \frac{3}{64} + \frac{1}{32} \right\} e^3 e_i^3 \cos(2t - 2x + 2x)$$

$$+ \left\{ \frac{9}{92} + \frac{3}{64} + \frac{1}{32} + \frac{3}{64} + \frac{27}{32} \right\} e^3 e_i^3 \cos(2t + 2x + 2x)$$

$$+ \left\{ \frac{9}{94} + \frac{1}{64} - \frac{9}{92} - \frac{3}{32} + \frac{3}{64} + \frac{8}{64} - \frac{9}{92} + \frac{9}{16} - \frac{3}{32} \right\} e^3 e_i^3 \cos(2x - 2x)$$

$$+ \left\{ \frac{81}{32} + \frac{1}{64} + \frac{9}{32} + \frac{1}{64} + \frac{9}{32} \right\} e^3 e_i^3 \cos(2t + 2x + 2x)$$

$$+ \left\{ \frac{1}{32} + \frac{1}{64} + \frac{9}{32} + \frac{1}{64} + \frac{9}{32} \right\} e^3 e_i^3 \cos(2t - 2x + 2x)$$

$$+ \left\{ \frac{1}{32} + \frac{1}{64} + \frac{9}{32} + \frac{1}{64} + \frac{9}{32} \right\} e^3 e_i^3 \cos(2t + 2x - 2x)$$

$$+ \left\{ \frac{1}{32} + \frac{9}{64} + \frac{3}{32} + \frac{9}{64} + \frac{3}{32} \right\} e^3 e_i^3 \cos(2t + 2x - 2x)$$

$$+ \left\{ \frac{1}{32} + \frac{9}{64} + \frac{3}{32} + \frac{9}{64} + \frac{3}{32} \right\} e^3 e_i^3 \cos(2t + 2x - 2x)$$

$$+ \left\{ \frac{1}{32} + \frac{9}{64} + \frac{3}{32} + \frac{9}{64} + \frac{3}{32} \right\} e^3 e_i^3 \cos(2t + 2x - 2x)$$

$$+ \left\{ \frac{1}{32} + \frac{9}{64} + \frac{3}{32} + \frac{9}{64} + \frac{3}{32} \right\} e^3 e_i^3 \cos(2t + 2x - 2x)$$

$$+ \left\{ \frac{1}{32} + \frac{9}{64} + \frac{3}{32} + \frac{9}{64} + \frac{3}{32} \right\} e^3 e_i^3 \cos(2t + 2x - 2x)$$

$$+ \left\{ \frac{1}{32} + \frac{9}{64} + \frac{3}{32} + \frac{9}{64} + \frac{3}{32} \right\} e^3 e_i^3 \cos(2t + 2x - 2x)$$

$$+ \left\{ \frac{1}{32$$

$$+ \left\{ -\frac{3}{4} + \frac{3}{8} \right\} e_i^2 \cos (2z - 2y) + \left\{ -\frac{3}{4} + \frac{1}{8} \right\} e_i^3 \cos (2z + 2y)$$

$$[96]$$

$$+ \left\{ \frac{1}{4} + \frac{3}{8} \right\} e_i^3 \cos (2t - 2z - 2y) + \left\{ \frac{9}{4} + \frac{1}{8} \right\} e_i^3 \cos (2t + 2z - 2y)$$

$$[97]$$

$$+ a^2 a_i^3 \sin^4 \frac{i}{2} \left\{ \frac{1}{2} + \frac{1}{2} \cos (2t - 2y) \right\}$$

$$[63]$$

$$r^{5} r^3 \cos (\lambda^5 - \lambda)^3$$

$$= a^2 a_i^3 \cos^4 \frac{i}{2} \left\{ \frac{1}{2} + \frac{3}{4} (e^3 + e_i^3) + \frac{9}{8} e^2 e_i^2 + \left\{ \frac{1}{2} - \frac{5}{4} (e^3 + e_i^3) + \frac{e^3}{8} e^3 e_i^3 \right\} e^{\cos x}$$

$$[1]$$

$$+ \left\{ \frac{3}{2} + \frac{13}{16} e^3 + \frac{15}{4} e_i^3 \right\} e^3 \cos 2t + \left\{ -1 + \frac{e^3}{8} - \frac{3}{2} e_i^3 \right\} e^{\cos x}$$

$$[2] [5]$$

$$+ \left\{ -\frac{1}{4} + \frac{1}{12} e^3 - \frac{3}{8} e_i^3 \right\} e^3 \cos 2x$$

$$[8] [7]$$

$$+ \left\{ \frac{5}{4} - \frac{25}{8} e_i^3 \right\} e^2 \cos (2t - 2x) + \left\{ \frac{1}{2} - \frac{5}{4} e^3 - \frac{5}{4} e_i^3 \right\} e \cos (2t + 2x)$$

$$[9] [19]$$

$$+ \left\{ 1 - \frac{1}{8} (e^2 + e_i^3) \right\} e e_i \cos (x + z)$$

$$[11]$$

$$+ \left\{ -\frac{3}{2} + \frac{13}{16} e^3 + \frac{57}{16} e_i^3 \right\} e e_i \cos (2t - x - z)$$

$$[12] [13]$$

$$+ \left\{ 1 - \frac{(e^3 + e_i^5)}{8} \right\} e e_i \cos (x - z)$$

$$[14]$$

$$+ \left\{ \frac{9}{2} - \frac{39}{16} (e^3 + e_i^3) \right\} e e_i \cos (2t - x + x)$$

$$[15]$$

$$+ \left\{ \frac{1}{2} - \frac{19}{16} (e^3 + e_i^3) \right\} e e_i \cos (2t + x - z) - \frac{e^5}{8} \cos 3x$$

$$[20] [35]$$

$$- \frac{7}{48} \cos (2t - 3x) + \frac{25}{48} e^3 \cos (2t + 3x) + \frac{e^3}{4} e^3 \cos (2t + 2x)$$

$$\begin{array}{c} + \frac{5}{4} \, e^3 e_i \cos{(2\,t-2\,x-x)} - \frac{25}{16} e^2 e_i \cos{(2\,t+2\,x+z)} + \frac{e^3\,e_i}{4} \cos{(2\,x-z)} \\ & [24] \, [31] & [25] \, [30] & [26] \, [32] \\ \end{array}$$

$$- \frac{15}{4} \, e^3 e_i \cos{(2\,t-2\,x+z)} + \frac{e^3\,e_i}{2} \cos{(2\,t+2\,x-z)} \\ & [27] \, [33] & [28] \, [34] \\ - \frac{e^4}{12} \cos{4\,x} - \frac{e^4}{32} \cos{(2\,t-4\,x)} + \frac{9}{16} \, e^4 \cos{(2\,t+4\,x)} + \frac{e^3\,e_i}{8} \cos{(3\,x+z)} \\ & [38] \, [59] & [39] \, [61] & [40] \, [60] & [41] \, [53] \\ \end{array}$$

$$- \frac{7}{48} \, e^3 \, e_i \cos{(2\,t-3\,x-z)} - \frac{25}{16} \, e^2 \, e_i \cos{(2\,t+3\,x+z)} \\ & [42] \, [55] & [43] \, [54] \\ + \frac{e^3\,e_i}{8} \cos{(3\,x-z)} + \frac{7}{16} \, e^3 \, e_i \cos{(2\,t-3\,x+z)} + \frac{25}{48} \, e^3 \, e_i \cos{(2\,t+3\,x-z)} \\ & [44] \, [56] & [45] \, [57] & [46] \, [58] \\ \end{array}$$

$$+ \frac{e^3\,e_i}{16} \cos{(2\,x+2\,z)} + \frac{5}{4} \, e^3 \, e_i^2 \cos{(2\,t-2\,x-2\,z)} \\ & [47] & [48] \\ + \frac{5}{4} \, e^3 \, e_i \cos{(2\,t+2\,x+2\,z)} + \frac{e^3\,e_i^3}{6} \cos{(2\,x-2\,z)} \\ & [49] & [50] \\ + \frac{25}{8} \, e^2 \, e_i^3 \cos{(2\,t-2\,x+2\,z)} + \frac{e^3\,e_i^3}{2} \cos{(2\,t+2\,x-2\,z)} \\ & [51] & [52] \\ \end{array}$$

$$+ a^3 \, a_i^3 \cos^3\frac{i}{2} \sin^3\frac{i}{2} \left\{ \left\{ 1 - \frac{5}{2} \, e^2 + \frac{3}{3} \, e_i^3 \right\} \cos{2\,y} + \left\{ 1 + \frac{3}{3} \, e^2 - \frac{5}{2} \, e_i^3 \right\} \cos{(2\,t-2\,y)} \\ & [63] \\ - 3 \, e \cos{(x-2\,y)} + e \cos{(x+2\,y)} - e \cos{(2\,t-x-2\,y)} \\ & [65] & [66] \\ \end{array}$$

$$- e \cos{(2\,t+x-2\,y)} - e_i \cos{(2\,t-2\,x-2\,y)} \\ & [69] & [71] \\ + e_i \cos{(2\,t-2\,x-2\,y)} - \frac{e^3}{4} \cos{(2\,t+2\,x-2\,y)} \\ & [73] & [75] \\ - \frac{e^3}{4} \cos{(2\,t-2\,x-2\,y)} + \frac{e^3}{4} \cos{(2\,t+2\,x-2\,y)} \\ & [77] & [78] \\ - \frac{e^3}{4} \cos{(2\,t-2\,x-2\,y)} - \frac{e^3}{4} \cos{(2\,t+2\,x-2\,y)} \\ & [79] & [81] \\ \end{array}$$

$$\begin{array}{c} +3\,e_{i}\cos\left(x+z-2\,y\right)-e\,e_{i}\cos\left(x+z+2\,y\right) \\ & \left[83\right] \\ & \left[84\right] \\ -e\,e_{i}\cos\left(2\,t-x-z-2\,y\right)+3\,e_{i}\cos\left(2\,t+x+z-2\,y\right) \\ & \left[85\right] \\ & \left[87\right] \\ +3\,e\,e_{i}\cos\left(x-z-2\,y\right)-e\,e_{i}\cos\left(x-z+2\,y\right) \\ & \left[89\right] \\ & \left[90\right] \\ +3\,e\,e_{i}\cos\left(2\,t-x+z-2\,y\right)-e\,e_{i}\cos\left(2\,t+x-z-2\,y\right) \\ & \left[91\right] \\ & \left[93\right] \\ -\frac{3}{8}\,e_{i}^{\,2}\cos\left(2\,x-2\,y\right)-\frac{5}{8}\,e_{i}^{\,2}\cos\left(2\,x+2\,y\right) \\ & \left[95\right] \\ +\frac{5}{8}\,e_{i}^{\,3}\cos\left(2\,x-2\,y\right)+\frac{19}{8}\,e_{i}^{\,2}\cos\left(2\,t+2\,z-2\,y\right) \\ & \left[97\right] \\ & \left[99\right] \\ \end{array} \right] \\ +a^{2}\,a_{i}^{\,3}\sin^{4}\frac{\iota}{2}\left\{\frac{1}{2}+\frac{1}{2}\cos\left(2\,t-2\,y\right)\right\} \\ & \left[63\right] \\ \frac{r^{2}}{2\,r_{i}^{\,3}}=\frac{a^{2}}{a_{i}^{\,3}}\left\{\frac{1}{2}+\frac{3}{4}\,e^{2}+\frac{3}{4}\,e_{i}^{\,2}+\frac{9}{8}\,e^{2}+\frac{15}{16}\,e_{i}^{\,4}-e\,\left\{1-\frac{e^{2}}{8}+\frac{3}{2}\,e_{i}^{\,2}\right\}\cos x \\ & \left[2\right] \\ +\frac{3}{2}\,e_{i}\left\{1+\frac{3}{2}\,e^{2}+\frac{9}{8}\,e_{i}^{\,2}\right\}\cos z-\frac{e^{2}}{4}\left\{1-\frac{e^{3}}{3}+\frac{3\,e_{i}^{\,2}}{2}\right\}\cos 2\,x \\ & \left[5\right] \\ -\frac{3}{2}\,e\,e_{i}\left\{1-\frac{e^{3}}{8}+\frac{9}{8}\,e_{i}^{\,2}\right\}\cos \left(x+z\right) \\ & \left[11\right] \\ -\frac{3}{2}\,e\,e_{i}\left\{1-\frac{e^{3}}{8}+\frac{9}{8}\,e_{i}^{\,2}\right\}\cos \left(x-z\right) \\ & \left[14\right] \\ +\frac{9}{4}\,e_{i}^{\,2}\left\{1+\frac{7}{9}\,e_{i}^{\,3}+\frac{3}{2}\,e^{2}\right\}\cos \left(x-2\right) \\ & \left[17\right] \\ & \left[20\right] \\ & \left[23\right] \\ -\frac{3}{8}\,e^{3}\,e_{i}\cos 3\,z-\frac{e^{4}}{12}\cos 4\,x-\frac{3}{2}\,e^{3}\cos \left(3\,x+z\right) \\ & \left[29\right] \\ & \left[32\right] \\ +\frac{53}{16}\,e_{i}^{\,3}\cos 3\,z-\frac{e^{4}}{12}\cos 4\,x-\frac{3}{2}\,e^{3}\cos \left(3\,x+z\right) \\ & \left[35\right] \\ & \left[38\right] \\ \end{array}$$

$$-\frac{3}{16}e^{3}e_{i}\cos(3x-z) - \frac{9}{16}e^{2}e_{i}^{2}\cos(2x+2z) - \frac{9}{16}e^{2}e_{i}\cos(2x-2z)$$

$$[44] \qquad [47] \qquad [50]$$

$$-\frac{53}{16}e^{2}e_{i}\cos(x+3z) - \frac{53}{16}e^{2}e_{i}\cos(x-3z) + \frac{77}{16}e_{i}^{4}\cos4z$$

$$[53] \qquad [56] \qquad [59]$$

Terms in R multiplied by $-\frac{3}{2}\cos^4\frac{\iota}{2}\frac{a^2}{a^3}$

$$= * \left\{ \frac{1}{2} + \frac{3}{4} \left(e^{2} + e_{i}^{2} \right) + \frac{9}{8} e^{2} e_{i}^{2} \right\} \left\{ 1 + 5 e_{i}^{2} + \frac{105}{8} e_{i}^{4} \right\}$$

$$= * \left\{ \frac{1}{2} + \frac{3}{4} \left(e^{2} + e_{i}^{2} \right) + \frac{9}{8} e^{2} e_{i}^{2} \right\} \left\{ 1 + 5 e_{i}^{2} + \frac{105}{16} e_{i}^{4} \right\} - \frac{5}{4} e_{i}^{4}$$

$$+ \left\{ \left\{ \frac{1}{2} - \frac{5}{4} \left(e^{2} + e_{i}^{2} \right) + \frac{23}{32} \left(e^{4} + e_{i}^{4} \right) + \frac{25}{8} e^{2} e_{i}^{2} \right\} \left\{ 1 + 5 e_{i}^{2} + \frac{105}{8} e_{i}^{4} \right\}$$

$$+ \left\{ \frac{1}{2} - \frac{19}{16} e_{i}^{2} - \frac{5}{4} e^{2} - \frac{3}{2} + \frac{13}{16} e_{i}^{2} + \frac{15}{4} e^{2} \right\} \left\{ \frac{5}{2} e_{i}^{2} + \frac{135}{16} e_{i}^{4} \right\}$$

$$+ \left\{ \frac{5}{2} + \frac{25}{4} \right\} e_{i}^{4} \right\} \cos 2 t$$

$$= [2]$$

$$+ \left\{ -1 + \frac{e^{2}}{8} - \frac{3}{2} e_{i}^{2} - 5 e_{i}^{2} + \frac{5}{2} e_{i}^{2} + \frac{5}{2} e_{i}^{2} \right\} e \cos x$$

$$= [2]$$

$$+ \left\{ -\frac{3}{2} + \frac{13}{16} e^{2} + \frac{15}{4} e_{i}^{2} - \frac{15}{2} e_{i}^{2} - \frac{15}{4} e_{i}^{2} + \frac{45}{4} e_{i}^{2} \right\} e \cos (2 t - x)$$

$$= [3]$$

$$+ \left\{ \frac{1}{2} - \frac{19}{16} e^{2} - \frac{5}{4} e_{i}^{2} + \frac{5}{2} e_{i}^{2} + \frac{5}{4} e_{i}^{2} - \frac{15}{4} e_{i}^{2} \right\} e \cos (2 t + x)$$

$$= [4]$$

$$+ \left\{ -1 + \frac{e_{i}^{2}}{8} - \frac{3}{2} e^{2} - 5 e_{i}^{2} + \frac{5}{2} e_{i}^{2} + \frac{15}{4} e^{2} + \frac{15}{4} e_{i}^{2} + \frac{135}{16} e_{i}^{2} - \frac{5}{8} e_{i}^{2} - 5 e_{i}^{2} \right\} e_{i} \cos x$$

$$= \left\{ \frac{1}{2} - \frac{19}{16} e_{i}^{2} - \frac{5}{4} e^{2} + \frac{5}{2} e_{i}^{2} + \frac{5}{4} e_{i}^{3} + \frac{5}{4} - \frac{25}{8} e^{2} - \frac{25}{8} e_{i}^{2} + \frac{5}{8} e_{i}^{2} + \frac{15}{8} e_{i}^{2} + \frac{15}{$$

* This multiplication of $r^2 r_i^2 \cos{(\lambda^2 - \lambda_i)^2}$ by r_i^5 may be effected at once by means of Table II.

$$\begin{split} &+\left\{-\frac{3}{2}+\frac{13}{16}e^{z}+\frac{15}{4}e^{2}-\frac{15}{2}e^{z}^{z}+\frac{5}{4}-\frac{25}{8}e^{z}-\frac{25}{8}e^{z}^{2}+\frac{135}{32}e^{z}^{2}+\frac{5}{2}e^{z}^{2}\right\}e_{i}\cos(2t+z)\\ &+\left\{-\frac{1}{4}+\frac{e^{2}}{12}-\frac{3}{8}e^{z}^{2}-\frac{5}{4}e^{z}+\frac{5}{8}e^{z}^{2}+\frac{5}{8}e^{z}^{2}\right\}e^{z}\cos2x\\ &+\left\{\frac{5}{4}-\frac{25}{8}e^{z}^{2}+\frac{25}{4}e^{z}+\frac{25}{8}e^{z}^{2}-\frac{75}{8}e^{z}^{2}\right\}e^{z}\cos(2t-2x)\\ &-\left[9\right]\\ &+\left\{\frac{1}{2}-\frac{5}{4}e^{z}-\frac{5}{4}e^{z}+\frac{5}{2}e^{z}^{2}+\frac{5}{4}e^{z}^{2}-\frac{15}{4}e^{z}^{2}\right\}e^{z}\cos(2t+2x)\\ &-\left[10\right]\\ &+\left\{1-\frac{e^{z}}{8}-\frac{e^{z}}{8}+5e^{z}-\frac{5}{2}+\frac{5}{16}e^{z}-\frac{15}{4}e^{z}^{2}-\frac{15}{16}e^{z}^{2}+\frac{5}{8}e^{z}^{2}\right\}e^{z}\cos(2t+2x)\\ &-\left[10\right]\\ &+\left\{1-\frac{e^{z}}{8}-\frac{e^{z}}{8}+5e^{z}-\frac{5}{2}+\frac{5}{16}e^{z}-\frac{15}{4}e^{z}^{2}-\frac{135}{16}e^{z}^{2}+\frac{5}{8}e^{z}^{2}\right\}e^{z}\cos(x+z)\\ &+\left\{1-\frac{e^{z}}{8}-\frac{e^{z}}{8}+5e^{z}^{2}-\frac{5}{2}+\frac{5}{16}e^{z}-\frac{15}{4}e^{z}^{2}-\frac{135}{16}e^{z}^{2}+\frac{5}{8}e^{z}^{2}\\ &-\left\{11\right\}\right\}\\ &+\left\{1-\frac{e^{z}}{8}-\frac{e^{z}}{8}+5e^{z}^{2}-\frac{5}{2}+\frac{5}{16}e^{z}-\frac{15}{4}e^{z}^{2}-\frac{135}{16}e^{z}^{2}+\frac{5}{8}e^{z}^{2}\\ &-\left\{11\right\}\right\}\\ &-\frac{405}{32}e^{z}+\frac{45}{2}e^{z}^{2}+e^{z}\cos(2t-x-z)+\left\{-\frac{3}{2}+\frac{13}{16}e^{z}+\frac{5}{16}e^{z}-\frac{15}{2}e^{z}^{2}+\frac{5}{4}e^{z}\\ &-\left\{11\right\}\\ &-\frac{95}{32}e^{z}-\frac{25}{8}e^{z}+\frac{135}{32}e^{z}^{2}+\frac{5}{8}e^{z}+\frac{5}{2}e^{z}^{2}+\frac{5}{2}e^{z}^{2}+\frac{5}{6}e^{z}-\frac{15}{4}e^{z}-\frac{135}{16}e^{z}+\frac{5}{4}e^{z}-\frac{15}{2}e^{z}+\frac{5}{4}e^{z}\\ &-\left\{11\right\}\\ &+\left\{1-\frac{e^{z}}{8}-\frac{e^{z}}{8}+5e^{z}+\frac{5}{4}\frac{e^{z}}{2}-\frac{5}{2}+\frac{5}{16}e^{z}-\frac{15}{4}e^{z}-\frac{135}{4}e^{z}+\frac{5}{4}e^{z}-\frac{1}{2}e^{z}+\frac{5}{4}e^{z}\\ &-\left\{11\right\}\\ &+\left\{1-\frac{e^{z}}{2}-\frac{39}{8}e^{z}-\frac{39}{16}e^{z}+\frac{45}{2}e^{z}-\frac{15}{4}e^{z}-\frac{5}{32}e^{z}+\frac{75}{8}e^{z}-\frac{405}{32}e^{z}\\ &+\left\{11\right\}\\ &+\left\{1-\frac{e^{z}}{2}-\frac{19}{16}e^{z}-\frac{19}{16}e^{z}+\frac{45}{2}e^{z}+\frac{15}{4}e^{z}-\frac{5}{32}e^{z}+\frac{15}{8}e^{z}-\frac{15}{8}e^{z}+\frac{15}{32}e^{z}-\frac{15}{2}e^{z}\\ &+\left\{11\right\}\\ &+\left\{1-\frac{1}{2}-\frac{19}{16}e^{z}-\frac{19}{16}e^{z}+\frac{15}{2}e^{z}+\frac{15}{4}e^{z}-\frac{15}{2}e^{z}+\frac{15}{6}e^{z}-\frac{15}{8}e^{z}+\frac{15}{32}e^{z}-\frac{15}{8}e^{z}+\frac{15}{2}e^{z}+\frac{15}{2}e^{z}\\ &+\left\{11\right\}\\ &+\left\{1-\frac{1}{2}-\frac{1}{2}e^{z}-\frac{15}{16}e^{z}+\frac{15}{2}e^{z}+\frac{15}{16}e^{z}+\frac{15}{2}e^{z}+\frac{$$

$$+ \left\{ \frac{5}{4} - \frac{25}{8} e^{z} + \frac{25}{4} e^{z} - \frac{15}{4} + \frac{65}{32} e^{z} + \frac{75}{8} e^{z} - \frac{405}{32} e^{z} - \frac{35}{96} e^{z} + \frac{5}{2} - \frac{25}{4} e^{z} - \frac{25}{4} e^{z} \right.$$

$$+ \frac{155}{24} e^{z} + \frac{145}{32} e^{z} \right\} e^{z} \cos (2t + 2z)$$

$$= \frac{e^{3}}{8} \cos 3x - \frac{7}{48} e^{z} \cos (2t - 3x) + \frac{25}{48} e^{z} \cos (2t + 3x) + \left\{ \frac{1}{4} - \frac{5}{8} \right\} e^{z} e_{t} \cos (2x + z)$$

$$= \frac{23}{2} + \left\{ \frac{5}{4} + \frac{25}{8} \right\} e^{z} e_{t} \cos (2t - 2x - z) - \left\{ -\frac{3}{2} + \frac{5}{4} \right\} e^{z} e_{t} \cos (2t + 2x + z)$$

$$= \frac{25}{24} + \left\{ \frac{1}{4} - \frac{5}{8} \right\} e^{z} e_{t} \cos (2t - 2x - z) - \left\{ -\frac{15}{4} + \frac{25}{8} \right\} e^{z} e_{t} \cos (2t + 2x + z)$$

$$= \frac{25}{24} + \left\{ \frac{1}{4} - \frac{5}{8} \right\} e^{z} e_{t} \cos (2t - 2x - z) + \left\{ -\frac{15}{4} + \frac{25}{8} \right\} e^{z} e_{t} \cos (2t - 2x + z)$$

$$= \frac{25}{27} + \left\{ \frac{1}{4} - \frac{5}{8} \right\} e^{z} e_{t} \cos (2t - 2x - z) + \left\{ \frac{1}{4} + \frac{5}{2} - 5 \right\} e^{z} e_{t} \cos (2t - 2x + z)$$

$$= \frac{27}{27} + \left\{ \frac{1}{4} - \frac{5}{4} - \frac{15}{4} \right\} e^{z} e_{t} \cos (2t + 2x - z) + \left\{ \frac{1}{4} + \frac{5}{2} - 5 \right\} e^{z} e_{t}^{z} \cos (x + 2z)$$

$$= \frac{29}{29} + \left\{ -\frac{3}{4} - \frac{15}{4} - \frac{15}{2} \right\} e^{z} e_{t}^{z} \cos (2t - x - 2z)$$

$$= \frac{30}{29} + \left\{ \frac{1}{4} - \frac{15}{4} - \frac{15}{2} \right\} e^{z} e_{t}^{z} \cos (2t - x + 2z) + \left\{ \frac{1}{4} + \frac{5}{2} - 5 \right\} e^{z} e_{t}^{z} \cos (x - 2z)$$

$$= \frac{33}{23} + \left\{ -\frac{15}{4} + \frac{45}{4} - \frac{15}{2} \right\} e^{z} e_{t}^{z} \cos (2t - x + 2z) + \left\{ \frac{1}{4} + \frac{5}{2} - 5 \right\} e^{z} e_{t}^{z} \cos (2t + x - 2z)$$

$$= \frac{33}{23} + \left\{ -\frac{15}{4} + \frac{45}{4} - \frac{15}{2} \right\} e^{z} e_{t}^{z} \cos (2t - x + 2z) + \left\{ \frac{1}{4} + \frac{5}{2} + \frac{5}{4} + \frac{5}{2} \right\} e^{z} e_{t}^{z} \cos (2t - 3z)$$

$$= \frac{33}{33} + \left\{ -\frac{15}{4} + \frac{15}{4} + \frac{15}{2} \right\} e^{z} e_{t}^{z} \cos (2t + 3z)$$

$$= \frac{37}{3} + \left\{ -\frac{7}{48} + \frac{25}{8} + \frac{145}{32} \right\} e^{z} e_{t}^{z} \cos (2t - 3x - z)$$

$$= \frac{43}{3} + \left\{ -\frac{15}{4} + \frac{15}{4} + \frac{15}$$

$$+ \left\{ \frac{7}{16} - \frac{35}{96} \right\} e^{3} e_{i} \cos \left(2 t - 3 x + z\right)$$

$$[45]$$

$$+ \left\{ \frac{25}{48} + \frac{125}{96} \right\} e^{3} e_{i} \cos \left(2 t + 3 x - z\right) + \left\{ \frac{1}{16} + \frac{5}{8} - \frac{5}{4} \right\} e^{2} e_{i}^{3} \cos \left(2 x + 2 z\right)$$

$$[46]$$

$$+ \left\{ \frac{5}{4} + \frac{125}{8} + \frac{25}{4} \right\} e^{2} e_{i}^{2} \cos \left(2 t - 2 x - 2 z\right) + \left\{ \frac{5}{4} - \frac{15}{4} + \frac{5}{2} \right\} e^{2} e_{i}^{3} \cos \left(2 t + 2 x + 2 z\right)$$

$$[48]$$

$$+ \left\{ \frac{1}{16} + \frac{5}{8} - \frac{5}{4} \right\} e^{2} e_{i}^{2} \cos \left(2 x - 2 z\right) + \left\{ \frac{25}{8} - \frac{75}{8} + \frac{25}{4} \right\} e^{2} e_{i}^{3} \cos \left(2 t - 2 x + 2 z\right)$$

$$[50]$$

$$+ \left\{ \frac{1}{2} + \frac{5}{4} + \frac{5}{2} \right\} e^{2} e_{i}^{2} \cos \left(2 t + 2 x - 2 z\right) + \left\{ \frac{1}{8} + \frac{5}{8} + 5 - \frac{145}{16} \right\} e^{2} e_{i}^{3} \cos \left(x + 3 z\right)$$

$$[52]$$

$$+ \left\{ -\frac{25}{16} - \frac{15}{4} - \frac{15}{2} - \frac{435}{32} \right\} e^{2} e_{i}^{3} \cos \left(2 t - x - 3 z\right)$$

$$[54]$$

$$+ \left\{ -\frac{7}{48} + \frac{25}{8} - \frac{15}{2} + \frac{145}{32} \right\} e^{2} e_{i}^{3} \cos \left(2 t + x + 3 z\right)$$

$$[55]$$

$$+ \left\{ \frac{1}{8} + \frac{5}{8} + 5 - \frac{145}{16} \right\} e^{2} e_{i}^{3} \cos \left(2 t + x - 3 z\right)$$

$$[56]$$

$$[57]$$

$$+ \left\{ \frac{25}{48} + \frac{5}{4} + \frac{5}{2} - \frac{145}{32} \right\} e^{2} e_{i}^{3} \cos \left(2 t + x - 3 z\right)$$

$$[58]$$

$$+ \left\{ \frac{9}{16} + \frac{125}{96} + \frac{5}{2} + \frac{145}{32} + \frac{745}{192} \right\} e_{i}^{4} \cos \left(2 t - 4 z\right)$$

$$[60]$$

$$+ \left\{ -\frac{1}{32} - \frac{35}{96} + \frac{25}{4} - \frac{435}{32} + \frac{745}{192} \right\} e_{i}^{4} \cos \left(2 t + 4 z\right)$$

$$[61]$$

Terms in
$$R$$
 multiplied by $-\frac{3}{2}\sin^2\frac{t}{2}\cos^2\frac{t}{2}\frac{a^2}{a_i^3}$

$$= \left\{1 - \frac{5}{2}e^2 + \frac{3}{2}e_i^2 + 5e_i^2 - \frac{5}{2}e_i^2 - \frac{5}{2}e_i^2\right\}\cos 2y$$

$$[62]$$

$$+ \left\{1 + \frac{3}{2}e^2 - \frac{5}{2}e_i^2 + 5e_i^2 + \frac{5}{2}e_i^2 - \frac{15}{2}e_i^2\right\}\cos (2t - 2y)$$

$$[63]$$

$$-3e\cos (x - 2y) + e\cos (x + 2y) - e\cos (2t - x - 2y) - e\cos (2t + x - 2y)$$

$$[65]$$

$$[66]$$

$$[67]$$

Terms in
$$R$$
 multiplied by $-\frac{3}{2}\cos^4\frac{i}{2}\frac{a^2}{a_i^3}$

$$= \frac{1}{2} + \frac{3}{4}e^2 + \frac{3}{4}e_i^2 + \frac{15}{16}e_i^4 + \frac{9}{8}e^2e_i^2 + \left\{\frac{1}{2} - \frac{5}{4}e^2 - \frac{5}{4}e_i^2 + \frac{23}{32}e^4 + \frac{13}{32}e_i^4 + \frac{25}{8}e^2e_i^2\right\}\cos 2t$$

$$+ \left\{1 + \frac{e^2}{8} - \frac{3}{2}e_i^2\right\}e\cos x + \left\{-\frac{3}{2} + \frac{13}{16}e^2 + \frac{15}{4}e_i^2\right\}e\cos (2t - x)$$

$$[2] \qquad [3]$$

$$+ \left\{\frac{1}{2} - \frac{19}{16}e^2 - \frac{5}{4}e_i^2\right\}e\cos (2t + x) + \left\{\frac{3}{2} + \frac{9}{4}e^2 + \frac{27}{16}e_i^2\right\}e_i\cos z$$

$$[4] \qquad [5]$$

$$+ \left\{ \frac{7}{4} - \frac{35}{8}e^{3} - \frac{123}{32}e^{3} \right\} e_{i}\cos(2t - z)$$

$$= \left\{ 6\right\}$$

$$+ \left\{ -\frac{1}{4} + \frac{5}{8}e^{2} + e_{i}^{3} \right\} e_{i}\cos(2t + z) + \left\{ -\frac{1}{4} + \frac{e^{3}}{12} - \frac{3}{8}e_{i}^{3} \right\} e^{5}\cos 2x$$

$$= \left[7\right]$$

$$+ \left\{ \frac{5}{4} - \frac{25}{8}e_{i}^{5} \right\} e^{5}\cos(2t - 2x) + \left\{ \frac{1}{2} - \frac{5}{4}e^{5} - \frac{5}{4}e_{i}^{5} \right\} e^{5}\cos(2t + 2x)$$

$$= \left[10\right]$$

$$+ \left\{ -\frac{3}{2} + \frac{3}{16}e^{2} - \frac{27}{16}e_{i}^{3} \right\} e_{i}\cos(x + z) + \left\{ -\frac{21}{4} + \frac{91}{32}e^{2} + \frac{369}{32}e_{i}^{3} \right\} e_{i}\cos(2t - x - z)$$

$$= \left[11\right]$$

$$+ \left\{ -\frac{1}{4} + \frac{19}{32}e^{2} + \frac{e_{i}^{3}}{32} \right\} e_{i}\cos(2t + x + z) + \left\{ -\frac{3}{2} + \frac{3}{16}e^{5} - \frac{27}{16}e_{i}^{3} \right\} e_{i}\cos(x - z)$$

$$= \left[13\right]$$

$$+ \left\{ \frac{3}{4} - \frac{13}{32}e^{3} - \frac{3}{32}e_{i}^{3} \right\} e_{i}\cos(2t - x + z) + \left\{ \frac{7}{4} - \frac{133}{32}e^{3} - \frac{123}{32}e_{i}^{3} \right\} e_{i}\cos(2t + x - z)$$

$$= \left[16\right]$$

$$+ \left\{ \frac{9}{4} + \frac{27}{8}e^{3} + \frac{21}{12}e_{i}^{3} \right\} e_{i}\cos(2t - x + z) + \left\{ \frac{7}{4} - \frac{85}{8}e^{2} - \frac{115}{12}e_{i}^{3} \right\} e_{i}^{3}\cos(2t - 2x) + -\frac{e^{3}}{8}\cos3x$$

$$= \left[17\right]$$

$$= \left[18\right]$$

$$= \left[19\right]$$

$$-\frac{7}{48}e^{3}\cos(2t - 3x) + \frac{25}{48}e^{3}\cos(2t + 3x) - \frac{3}{8}e^{3}e_{i}\cos(2x + z)$$

$$= \left[23\right]$$

$$= \left[23\right]$$

$$+ \frac{35}{8}e^{3}e_{i}\cos(2t - 2x + z) + \frac{7}{4}e^{3}e_{i}\cos(2t + 2x - z)$$

$$= \left[28\right]$$

$$-\frac{9}{4}e^{3}e_{i}\cos(x + 2z) - \frac{51}{4}e^{3}e_{i}\cos(2t - x - 2z)$$

$$= \left[29\right]$$

$$= \left[30\right]$$

$$-\frac{9}{4}e^{3}e^{3}\cos(x - 2z) + \frac{17}{4}e^{3}e^{3}\cos(2t - 3z) + \frac{e^{3}e_{i}}{96}\cos(2t + 3z) - \frac{e^{4}e_{i}}{12}\cos4x - \frac{e^{4}e_{i}}{32}\cos(2t - 4x)$$

$$= \left[35\right]$$

$$= \left[36\right]$$

$$= \left[36\right]$$

$$= \left[36\right]$$

^{*} It is remarkable that the coefficient of argument 19 equals zero.

$$\begin{array}{c} + \frac{9}{16} e^4 \cos{(2\,t + 4\,x)} - \frac{3}{16} e^3 \, e_i \cos{(3\,x + z)} \\ [40] & [41] \\ - \frac{49}{96} e^3 \, e_i \cos{(2\,t + 3\,x - z)} - \frac{25}{96} e^3 \, e_i \cos{(2\,t - 3\,x - z)} - \frac{3}{16} \, e^3 \, e_i \cos{(3\,x - z)} \\ [42] & [43] & [44] \\ + \frac{7}{96} e^3 \, e_i \cos{(2\,t - 3\,x + z)} + \frac{175}{96} \, e^3 \, e_i \cos{(2\,t + 3\,x - z)} - \frac{9}{16} \, e^3 \, e_i^2 \cos{(2\,x + 2\,z)} \\ [45] & [46] & [47] \\ + \frac{85}{8} e^2 \, e_i^2 \cos{(2\,t - 2\,x - 2\,z)} - \frac{9}{16} \, e^2 \, e_i^2 \cos{(2\,x - 2\,z)} + \frac{17}{4} \, e^2 \, e_i^2 \cos{(2\,t + 2\,x - 2\,z)} \\ [48] & [50] & [52] \\ - \frac{53}{16} \, e \, e_i^3 \cos{(x + 3\,z)} - \frac{845}{32} e \, e_i^3 \cos{(2\,t - x + 3\,z)} + \frac{e \, e_i^3}{96} \cos{(2\,t + x - 3\,z)} \\ [53] & [54] & [55] \\ - \frac{53}{16} \, e \, e_i^3 \cos{(x - 3\,z)} - \frac{e \, e_i^3}{32} \cos{(2\,t - x + 3\,z)} - \frac{25}{96} e \, e_i^3 \cos{(2\,t + x - 3\,z)} \\ [56] & [57] & [58] \\ - \frac{283}{96} \, e_i^4 \cos{4\,z} + \frac{2453}{192} \, e_i^4 \cos{(2\,t - 4\,z)} - \frac{741}{192} e_i^4 \cos{(2\,t + 4\,z)} \\ [59] & [60] & [61] \end{array}$$

Terms in
$$R$$
 multiplied by $-\frac{3}{2}\sin^2\frac{1}{2}\cos^2\frac{1}{2}\frac{a^3}{a_i^3}$ or $-\frac{3}{8}\sin^2\frac{a^2}{a_i^3}$

$$= \left\{1 - \frac{5}{2}e^2 + \frac{3}{2}e_i^2\right\}\cos 2y + \left\{1 + \frac{3}{2}e^2 - \frac{5}{2}e_i^2\right\}\cos (2t - 2y) - 3e\cos(x - 2y)$$

$$[62] \qquad [63] \qquad [65]$$

$$+ e\cos(x + 2y) - e\cos(2t - x - 2y) - e\cos(2t + x - 2y) + \frac{3}{2}e_i\cos(z - 2y) + \frac{3}{2}e_i\cos(z + 2y)$$

$$[66] \qquad [67] \qquad [69] \qquad [71] \qquad [72]$$

$$+ \frac{7}{2}e_i\cos(2t - z - 2y) - \frac{e_i}{2}\cos(2t + z - 2y) + \frac{5}{2}e^2\cos(2x - 2y) + e^2\cos(2x + 2y)$$

$$[73] \qquad [75] \qquad [77] \qquad [78]$$

$$-\frac{e^2}{4}\cos(2t - 2x - 2y) - \frac{e^2}{4}\cos(2t + 2x - 2y) - \frac{9}{2}e_i\cos(x + z - 2y)$$

$$[79] \qquad [81] \qquad [83]$$

$$+ \frac{3}{2}e_i\cos(x + z + 2y) - \frac{7}{2}e_i\cos(2t - x - z - 2y) + \frac{e^2}{2}\cos(2t + x + z - 2y)$$

$$[84] \qquad [85] \qquad [87]$$

$$\begin{split} &-\frac{9}{2}\,e\,e_i\cos\left(x-x-2\,y\right)+\frac{3}{2}\,e\,e_i\cos\left(x-x+2\,y\right)+\frac{e\,e_i}{2}\cos\left(2\,t-x+z-2\,y\right) \\ &-\left[89\right] & [90] & [91] \\ &-\frac{7}{2}\,e\,e_i\cos\left(2\,t+x-z-2\,y\right)+\frac{17}{8}\,e_i^2\cos\left(2\,x-2\,y\right)+\frac{15}{8}\,e_i^3\cos\left(2\,x+2\,y\right) \\ &-\left[93\right] & [95] & [96] \\ &+\frac{65}{8}\,e_i^3\cos\left(2\,t-2\,z-2\,y\right)-\frac{e^3}{8}\cos\left(2\,t+2\,z-2\,y\right) \\ &-\left[97\right] & [99] \\ R=m_i\left\{-\frac{1}{r_i}-\frac{1}{4}\left\{1+\frac{3}{2}\,e^3+\frac{3}{2}\,e^3+\frac{9}{4}\,e^3\,e^4+\frac{15}{8}\,e^4-\frac{3}{2}\,\gamma^2-\frac{9}{4}\,\gamma^2\,e^3-\frac{9}{4}\,\gamma^2\,e^3+\frac{39}{8}\,\gamma^4\right\}\frac{a^2}{a_i^3} \\ &-\frac{3}{4}\left\{1-\frac{5}{2}\,e^2-\frac{5}{2}\,e_i^3+\frac{23}{16}\,e^4+\frac{25}{4}\,e^2\,e_i^3+\frac{13}{16}\,e_i^4\right\}\cos^4\frac{1}{2}\,\frac{a^3}{a_i^3}\cos^2t \\ &+\frac{1}{2}\left\{1-\frac{e^2}{8}-\frac{3}{2}\,e_i^3-\frac{3}{2}\,\gamma^2\right\}\frac{a^3}{a_i^3}\,e\cos x \\ &-\frac{3}{4}\left\{1-\frac{13}{8}\,e^2-\frac{5}{2}\,e_i^3\right\}\cos^4\frac{1}{2}\,\frac{a^3}{a_i^3}\,e\cos\left(2\,t-x\right) \\ &-\frac{3}{4}\left\{1-\frac{19}{8}\,e^2-\frac{5}{2}\,e_i^3\right\}\cos^4\frac{1}{2}\,\frac{a^3}{a_i^3}\,e\cos\left(2\,t-x\right) \\ &-\frac{3}{4}\left\{1-\frac{19}{8}\,e^2-\frac{5}{2}\,e_i^3\right\}\cos^4\frac{1}{2}\,\frac{a^3}{a_i^3}\,e\cos\left(2\,t-x\right) \\ &-\frac{3}{4}\left\{1-\frac{5}{2}\,e^3-\frac{123}{66}\,e_i^3\right\}\cos^4\frac{1}{2}\,\frac{a^3}{a_i^3}\,e\cos\left(2\,t-x\right) \\ &-\frac{18}{8}\left\{1-\frac{5}{2}\,e^3-\frac{123}{66}\,e_i^3\right\}\cos^4\frac{1}{2}\,\frac{a^3}{a_i^3}\,e\cos\left(2\,t-x\right) \\ &+\frac{1}{8}\left\{1-\frac{5}{2}\,e^3-\frac{123}{2}\,e_i^3\right\}\cos^4\frac{1}{2}\,\frac{a^3}{a_i^3}\,e\cos\left(2\,t-x\right) \\ &-\frac{15}{8}\left\{1-\frac{5}{2}\,e^3\right\}\cos^4\frac{1}{2}\,\frac{a^3}{a_i^3}\,e^3\cos\left(2\,t-2\,x\right) \\ &-\frac{15}{8}\left\{1-\frac{5}{2}\,e^3\right\}\cos^4\frac{1}{2}\,\frac{a^3}{a_i^3}\,e^3\cos\left(2\,t-2\,x\right) \\ &-\frac{15}{8}\left\{1-\frac{5}{2}\,e^3\right\}\cos^4\frac{1}{2}\,\frac{a^3}{a_i^3}\,e^3\cos\left(2\,t-2\,x\right) \\ &-\frac{15}{8}\left\{1-\frac{5}{2}\,e^3\right\}\cos^4\frac{1}{2}\,\frac{a^3}{a_i^3}\,e^3\cos\left(2\,t-2\,x\right) \\ &-\frac{1}{9}\left[9\right] \\ &-\frac{3}{4}\left\{1-\frac{5}{2}\,e^3-\frac{5}{2}\,e_i^3\right\}\cos^4\frac{1}{2}\,\frac{a^3}{a_i^3}\,e^3\cos\left(2\,t-2\,x\right) \\ &-\frac{1}{9}\left[9\right] \\ &-\frac{3}{4}\left\{1-\frac{5}{2}\,e^3-\frac{5}{2}\,e_i^3\right\}\cos^4\frac{1}{2}\,\frac{a^3}{2}\,e^3\cos\left(2\,t-2\,x\right) \\ &-\frac{3}{2}\left\{1-\frac{5}{2}\,e^3-\frac{5}{2}$$

Development of R.

$$\begin{array}{c} +\frac{3}{4}\left\{1-\frac{e^2}{8}+\frac{9}{8}\,e_i^2-\frac{3}{2}\,\gamma^2\right\}\frac{a^3}{a_i^3}\,e_i\cos\left(x+z\right) \\ & \left[11\right] \\ +\frac{63}{8}\left\{1-\frac{91}{168}e^2-\frac{123}{56}\,e_i^2\right\}\,\cos^4\frac{i}{2}\,\frac{a^3}{a_i^3}\,e_i\cos\left(2\,t-x-z\right) \\ & \left[12\right] \\ +\frac{3}{8}\left\{1-\frac{19}{8}e^3-\frac{e_i^2}{8}\right\}\cos^4\frac{i}{2}\,\frac{a^3}{a_i^3}\,e_i\cos\left(2\,t+x+z\right) \\ & \left[13\right] \\ +\frac{3}{4}\left\{1-\frac{e^3}{8}+\frac{9}{8}\,e_i^2-\frac{3}{2}\,\gamma^2\right\}\frac{a^3}{a_i^3}\,e_i\cos\left(2\,t+x+z\right) \\ & \left[13\right] \\ +\frac{3}{4}\left\{1-\frac{e^3}{8}+\frac{9}{8}\,e_i^2-\frac{3}{2}\,\gamma^2\right\}\frac{a^3}{a_i^3}\,e_i\cos\left(2\,t-x+z\right) \\ & \left[14\right] \\ -\frac{9}{8}\left\{1-\frac{13}{24}e^3-\frac{e_i^3}{8}\right\}\cos^4\frac{i}{2}\,\frac{a^3}{a_i^3}\,e_i\cos\left(2\,t-x+z\right) \\ & \left[15\right] \\ -\frac{21}{8}\left\{1-\frac{19}{8}\,e^2-\frac{123}{56}\,e_i^2\right\}\cos^4\frac{i}{2}\,\frac{a^3}{a_i^3}\,e_i\cos\left(2\,t+x-z\right) \\ & \left[16\right] \\ -\frac{9}{8}\left\{1+\frac{3}{2}\,e^2+\frac{7}{9}\,e_i^2-\frac{3}{2}\,\gamma^2\right\}\frac{a^3}{a_i^3}\,e_i\cos\left(2\,t-x+z\right) \\ & \left[16\right] \\ -\frac{9}{8}\left\{1+\frac{3}{2}\,e^3+\frac{7}{9}\,e_i^2-\frac{3}{2}\,\gamma^2\right\}\frac{a^3}{a_i^3}\,e_i\cos\left(2\,t+x-z\right) \\ & \left[16\right] \\ -\frac{9}{8}\left\{1+\frac{3}{2}\,e^2+\frac{7}{9}\,e_i^2-\frac{3}{2}\,\gamma^2\right\}\frac{a^3}{a_i^3}\,e_i\cos\left(2\,t-x+z\right) \\ & \left[18\right] \\ +\frac{1}{16}\,\frac{a^3}{a_i^3}\,e^3\cos\left(2\,x+x\right)-\frac{115}{51}\,e_i^3\right\}\cos^4\frac{1}{2}\,e_i^3\,e_i^3\cos\left(2\,t-2\,x\right) \\ & \left[18\right] \\ +\frac{1}{16}\,\frac{a^3}{a_i^3}\,e^3\,e_i\cos\left(2\,x+z\right)+\frac{15}{16}\,\frac{a^3}{a_i^3}\,e^3\,e_i\cos\left(2\,t-2\,x-z\right)+\frac{3}{8}\,\frac{a^3}{a_i^3}\,e^3\,e_i\cos\left(2\,t+2\,x-z\right) \\ & \left[24\right] \\ & \left[25\right] \\ +\frac{3}{8}\,\frac{a^3}{a_i^3}\,e^3\,e_i\cos\left(2\,x-z\right)+\frac{15}{16}\,\frac{a^3}{a_i^3}\,e^3\,e_i\cos\left(2\,t-2\,x+z\right)-\frac{21}{8}\,\frac{a^3}{a_i^3}\,e^3\,e_i\cos\left(2\,t+2\,x-z\right) \\ & \left[29\right] \\ & \left[29\right] \\ & \left[29\right] \\ & \left[30\right] \\ +\frac{9}{8}\,\frac{a^3}{a_i^3}\,e^3\,e_i^3\cos\left(2\,t-3\,z\right)-\frac{1}{8}\,\frac{a^3}{a_i^3}\,e_i^3\cos\left(2\,t+x-2z\right)-\frac{53}{32}\,\frac{a^3}{a_i^3}\,e_i^3\cos\left(3\,x+z\right) \\ & \left[36\right] \\ & \left[37\right] \\ & \left[38\right] \\ +\frac{3}{64}\,\frac{a^3}{a_i^3}\,e^4\cos\left(2\,t-4\,x\right)-\frac{27}{32}\,\frac{a^3}{a_i^3}\,e^3\cos\left(2\,t+4\,x\right)+\frac{3}{32}\,\frac{a^3}{a_i^3}\,e_i\cos\left(3\,x+z\right) \\ & \left[40\right] \\ & \left[41\right] \end{array} \right] \end{array}$$

$$\begin{array}{c} +\frac{40}{64}\frac{a^3}{a_1^3}e^5e_1\cos{(2\,t-3\,x-z)} + \frac{25}{64}\frac{a^3}{a_1^3}e^3e_1e_0\cos{(2\,t-3\,x-z)} + \frac{3}{32}\frac{a^3}{a_1^3}e^3e_1\cos{(3\,x-z)} & \text{Development of R.} \\ & [44] \\ -\frac{7}{64}\frac{a^3}{a_1^3}e^3e_1\cos{(2\,t-3\,x+z)} - \frac{175}{64}\frac{a^3}{a_1^3}e^3e_1\cos{(2\,t+3\,x-z)} \\ & [46] \\ +\frac{9}{32}\frac{a^3}{a_1^3}e^3e_1^3\cos{(2\,x+2\,z)} - \frac{255}{16}e^2e_1^2\cos{(2\,t-2\,x-2\,z)} \\ & [48] \\ +\frac{9}{32}\frac{a^3}{a_1^3}e^3e_1^3\cos{(2\,x-2\,z)} - \frac{51}{8}\frac{a^3}{a_1^3}e^3e_1^3\cos{(2\,t+2\,x-2\,z)} + \frac{53}{32}\frac{a^3}{a_1^3}e_1^3\cos{(x+3\,z)} \\ & [50] \\ & [52] \\ \end{array}$$

2 m 2

Development of R.

$$-\frac{3}{8}\frac{a^{3}}{a_{i}^{3}}\gamma^{2}e^{2}\cos\left(2x+2y\right) + \frac{3}{32}\frac{a^{3}}{a_{i}^{3}}\gamma^{2}e^{2}\cos\left(2t-2x-2y\right) \\ [78] \qquad [79] \\ +\frac{3}{32}\frac{a^{2}}{a_{i}^{3}}\gamma^{2}e^{2}\cos\left(2t+2x-2y\right) + \frac{27}{16}\frac{a^{3}}{a_{i}^{3}}\gamma^{2}ee_{i}\cos\left(x+z-2y\right) \\ [81] \qquad [83] \\ -\frac{9}{16}\frac{a^{3}}{a_{i}^{3}}\gamma^{2}ee_{i}\cos\left(x+z+2y\right) + \frac{21}{16}\frac{a^{3}}{a_{i}^{3}}\gamma^{2}ee_{i}\cos\left(2t-x-z-2y\right) \\ [84] \qquad [85] \\ -\frac{3}{16}\frac{a^{2}}{a_{i}^{3}}\gamma^{2}ee_{i}\cos\left(2t+x+z-2y\right) + \frac{27}{16}\frac{a^{3}}{a_{i}^{3}}\gamma^{2}ee_{i}\cos\left(2t-x-z-2y\right) \\ [87] \qquad [89] \\ -\frac{9}{16}\frac{a^{3}}{a_{i}^{3}}\gamma^{2}ee_{i}\cos\left(x-z+2y\right) - \frac{3}{16}\frac{a^{3}}{a_{i}^{3}}\gamma^{2}ee_{i}\cos\left(2t-x+z-2y\right) \\ [90] \qquad [91] \\ +\frac{21}{16}\frac{a^{3}}{a_{i}^{3}}\gamma^{2}ee_{i}\cos\left(2t+x-z-2y\right) \\ [93] \qquad [93] \\ -\frac{51}{64}\frac{a^{3}}{a_{i}^{3}}\gamma^{2}ee_{i}\cos\left(2t-2y\right) - \frac{45}{64}\frac{a^{3}}{a_{i}^{3}}\gamma^{2}e^{2}\cos\left(2t+2y\right) \\ [95] \qquad [96] \\ -\frac{195}{64}\frac{a^{3}}{a_{i}^{3}}\gamma^{2}e_{i}^{2}\cos\left(2t-2z-2y\right) + \frac{3}{64}\frac{a^{3}}{a_{i}^{3}}\gamma^{2}e^{2}\cos\left(2t+2z-2y\right) \\ [97] \qquad [99] \\ -\frac{3}{8}\left\{1+3e^{2}+3e^{2}-\frac{11}{4}\gamma^{2}\right\}_{a_{i}^{3}}^{a_{i}^{3}}e\cos t+\frac{15}{16}\frac{a^{3}}{a_{i}^{4}}e\cos (t-x) \\ [101] \qquad [102] \\ +\frac{3}{16}\frac{a^{3}}{a_{i}^{4}}e\cos (t-x) - \frac{9}{9}\frac{a^{3}}{a_{i}^{4}}e_{i}\cos (t-z) - \frac{3}{8}\frac{a^{3}}{a_{i}^{4}}e_{i}\cos (t-x-z) \\ [106] \qquad [107] \qquad [108] \\ +\frac{3}{16}\frac{a^{3}}{a_{i}^{4}}e_{i}\cos (t-2x) + \frac{9}{64}\frac{a^{3}}{a_{i}^{4}}e_{i}\cos (t-x+z) + \frac{9}{16}\frac{a^{3}}{a_{i}^{4}}e_{i}\cos (t-x-z) \\ [109] \qquad [110] \qquad [111] \\ -\frac{159}{64}\frac{a^{3}}{a_{i}^{4}}e_{i}^{2}\cos (t-2z) - \frac{33}{64}\frac{a^{3}}{a_{i}^{4}}e_{i}\cos (t+2z) - \frac{9}{16}\frac{a^{3}}{a_{i}^{4}}\gamma^{2}\cos (t-2y) \\ [112] \qquad [113] \qquad [114] \\ -\frac{15}{32}\frac{a^{3}}{a_{i}^{4}}\sin^{2}\frac{t}{2}\cos (t+2y) - \frac{5}{8}\left\{1-6e^{2}-6e_{i}^{2}-\frac{3}{4}\gamma^{2}\right\}_{a_{i}^{3}}^{2}\cos 3t$$

* For the coefficients of the terms multiplied by $\frac{a^3}{a_i^4}$ see p. 39.

In the elliptic movement;

* This quantity z, which is one of the rectangular coordinates of the moon, must not be confounded with $z = n_i t - \varpi_i$; this latter quantity should rather be x_i , but I think it better to conform as far as possible to the notation of M. Damoiseau.

$$\begin{split} &+\frac{\gamma}{8}\frac{e^{a}}{a}\sin\left(2\,x-y\right)+\frac{17}{8}\frac{\gamma}{e^{a}}\frac{e^{a}}{a}\sin\left(2\,x+y\right) \\ &\left[162\right] \\ &\left[147\right] \\ &+\left\{\left(1-e^{a}\right)\frac{r_{1}}{2}-\frac{e^{a}}{4}r_{4}+\frac{3}{4}\frac{e^{a}}{4}r_{3}\right\}\frac{\gamma}{a^{2}}\sin\left(2\,t-y\right) \\ &\left[147\right] \\ &+\left\{\left(1-e^{a}\right)\frac{r_{1}}{2}-\frac{e^{a}}{4}r_{4}+\frac{3}{4}\frac{e^{a}}{4}r_{3}\right\}\frac{e^{\gamma}}{a^{2}}\sin\left(2\,t+y\right)+\frac{e^{\gamma}r_{0}}{2\,a^{2}}\sin\left(x-y\right) \\ &\left[149\right] \\ &+\frac{3}{2}\frac{r_{0}}{a^{2}}e\gamma\sin\left(x+y\right)+\left\{-\frac{r_{2}}{2}-\frac{3}{4}\right\}\frac{e^{\gamma}}{a^{2}}\sin\left(2\,t-x-y\right) \\ &\left[150\right] \\ &+\left\{\frac{r_{2}}{2}-\frac{7}{4}\right\}\frac{e^{\gamma}}{a^{2}}\sin\left(2\,t-x+y\right)+\left\{-\frac{r_{4}}{2}-\frac{r_{1}}{4}\right\}\frac{e^{\gamma}}{a^{2}}\sin\left(2\,t+x-y\right) \\ &\left[153\right] \\ &+\left\{\frac{r_{2}}{2}+\frac{3}{4}r_{1}\right\}\frac{e^{\gamma}}{a^{2}}\sin\left(2\,t-x+y\right)+\frac{r_{1}e^{\gamma}}{2\,a^{2}}\sin\left(z-y\right)+\frac{r_{1}e^{\gamma}}{2\,a^{2}}\sin\left(z+y\right) \\ &\left[154\right] \\ &-\frac{r_{0}e^{\gamma}\gamma}{2\,a^{2}}\sin\left(2\,t-z-y\right)+\frac{r_{0}e^{\gamma}\gamma}{2\,a^{2}}\sin\left(2\,t-z+y\right)+\frac{r_{1}e^{\gamma}\gamma}{2\,a^{2}}\sin\left(2\,t-z-y\right) \\ &\left[156\right] \\ &+\left\{-\frac{r_{1}}{2}-\frac{3}{4}r_{3}-\frac{17}{16}r_{1}\right\}\frac{e^{\alpha}\gamma}{a^{2}}\sin\left(2\,t-2\,x-y\right)+\left\{\frac{r_{0}}{2}-\frac{r_{1}}{4}-\frac{1}{16}\right\}\frac{e^{\alpha}\gamma}{a^{2}}\sin\left(2\,t-2\,x+y\right) \\ &\left[163\right] \\ &+\left\{-\frac{r_{10}}{2}+\frac{r_{3}}{4}+\frac{r_{1}}{16}\right\}\frac{e^{\alpha}\gamma}{a^{2}}\sin\left(2\,t-2\,x-y\right)+\left\{\frac{r_{10}}{2}+\frac{3}{4}+\frac{17}{16}r_{1}\right\}\frac{e^{\alpha}\gamma}{a^{2}}\sin\left(2\,t-2\,x+y\right) \\ &\left[166\right] \\ &+\left\{-\frac{r_{11}}{2}+\frac{r_{3}}{4}\right\}\frac{e\,e\,\gamma}{a^{2}}\sin\left(2\,t-x-y\right)+\left\{\frac{r_{11}}{2}+\frac{3}{4}+\frac{17}{16}r_{1}\right\}\frac{e\,e\,\gamma}{a^{2}}\sin\left(2\,t-x-z+y\right) \\ &\left[166\right] \\ &+\left\{-\frac{r_{11}}{2}+\frac{r_{3}}{4}\right\}\frac{e\,e\,\gamma}{a^{2}}\sin\left(2\,t-x-z-y\right)+\left\{\frac{r_{11}}{2}+\frac{3}{4}r_{1}\right\}\frac{e\,e\,\gamma}{a^{2}}\sin\left(2\,t-x-z+y\right) \\ &\left[169\right] \\ &\left[170\right] \\ &+\left\{-\frac{r_{12}}{2}+\frac{r_{3}}{4}\right\}\frac{e\,e\,\gamma}{a^{2}}\sin\left(2\,t-x-z-y\right)+\left\{\frac{r_{11}}{2}+\frac{3}{4}r_{1}\right\}\frac{e\,e\,\gamma}{a^{2}}\sin\left(2\,t-x-z+y\right) \\ &\left[172\right] \\ &+\left\{-\frac{r_{12}}{2}+\frac{r_{2}}{4}\right\}\frac{e\,e,\gamma}{a^{2}}\sin\left(2\,t-x-z+y\right) \\ &\left[172\right] \\ &+\left\{-\frac{r_{12}}{2}+\frac{r_{2}}{4}\right\}\frac{e\,e,\gamma}{a^{2}}\sin\left(2\,t-x-z+y\right) \\ &\left[162\right] \\ &\left[170\right] \\ &+\left\{-\frac{r_{12}}{2}+\frac{r_{2}}{4}\right\}\frac{e\,e,\gamma}{a^{2}}\sin\left(2\,t-x-z+y\right) \\ &\left\{-\frac{r_{11}}{2}+\frac{3}{4}r_{2}\right\}\frac{e\,e,\gamma}{a^{2}}\sin\left(2\,t-x-z+y\right) \\ &\left\{-\frac{r_{11}}{2}+\frac{7}{4}\right\}\frac{e\,e,\gamma}{a^{2}}\sin\left(2\,t-x-z+y\right) \\ &\left\{-\frac{r_{11}}{2}+\frac{7}{4}\right\}\frac{e\,e,\gamma}{a^{2}}\sin\left(2\,t-x-z+y\right) \\ &\left\{-\frac{r_{11}}{$$

$$-\frac{r_{16}e_{1}\gamma}{2a^{2}}\sin\left(2t+x-z-y\right) + \left\{\frac{r_{16}}{2} + \frac{3}{4} r_{6}\right\} \frac{e_{1}\gamma}{a^{2}}\sin\left(2t+x-z+y\right)$$

$$[178]$$

$$-\frac{r_{17}}{2} \frac{e_{1}^{3}\gamma}{a^{2}}\sin\left(2z-y\right) + \frac{r_{17}}{2} \frac{e_{1}^{3}\gamma}{a^{2}}\sin\left(2z+y\right) - \frac{r_{18}}{2} \frac{e_{1}^{3}\gamma}{a^{2}}\sin\left(2t-2z-y\right)$$

$$[181]$$

$$+\frac{r_{18}}{2} \frac{e_{1}^{3}\gamma}{a^{2}}\sin\left(2t-2z+y\right) - \frac{r_{19}}{2} \frac{e_{1}^{3}\gamma}{a^{2}}\sin\left(2t+2z-y\right) + \frac{r_{19}}{2} \frac{e_{1}^{3}\gamma}{a^{2}}\sin\left(2t+2z+y\right)$$

$$[182]$$

$$[183]$$

$$[184]$$

$$\frac{m_{1}z}{r^{3}} = \frac{m_{1}a\gamma}{a_{1}^{3}}\left(1 + \frac{3}{2} e_{1}^{2} - \frac{e^{2}}{2}\right)\sin y + \frac{3}{2} \frac{m_{1}a\gamma}{a^{2}} e \sin \left(x-y\right) + \frac{m_{1}a\gamma}{2a_{1}^{3}}\sin \left(x+y\right)$$

$$[146]$$

$$[149]$$

$$[150]$$

$$-\frac{3}{2} \frac{m_{1}a\gamma}{a_{1}^{3}} e \sin \left(z-y\right) + \frac{3}{2} \frac{m_{1}a\gamma}{a_{1}^{3}} e \sin \left(z+y\right) - \frac{m_{1}a\gamma}{8} \frac{e^{2}}{a_{1}^{3}}\sin \left(2x-y\right)$$

$$[156]$$

$$[161]$$

$$+\frac{3}{8} \frac{m_{1}a\gamma}{a_{1}^{2}} e \sin \left(2x+y\right) + \frac{9}{4} \frac{m_{1}a\gamma}{a_{1}^{3}} e \sin \left(x+z-y\right) + \frac{3}{4} \frac{m_{1}a\gamma}{a_{1}^{3}} e \sin \left(x+z+y\right)$$

$$[162]$$

$$[167]$$

$$[168]$$

$$+\frac{9}{4} \frac{m_{1}a\gamma}{a_{1}^{3}} e \sin \left(x-z-y\right) + \frac{3}{4} \frac{m_{1}a\gamma}{a_{1}^{3}} e e_{1}}{4a_{1}^{3}} \sin \left(x-z+y\right) - \frac{9}{4} \frac{m_{1}a\gamma}{a_{1}^{3}} e^{2}}{4a_{1}^{3}} \sin \left(2z-y\right)$$

$$[179]$$

$$+\frac{9}{4} \frac{m_{1}a\gamma}{a_{1}^{3}} e \sin \left(2z+y\right)$$

$$[180]$$

$$\frac{a^3}{r^3} = 1 + \frac{3}{2}e^2 + 3e\cos x + \frac{9}{2}e^2\cos 2x$$

r being the elliptic value of r.

If $z = a \gamma z_{146} \sin y + a \gamma z_{147} \sin (2 t - y) + a \gamma z_{148} \sin (2 t + y)$ &c.

$$\begin{aligned} \frac{z}{r^3}^* &= \left\{ \left(1 + \frac{3}{2} \frac{e^2}{2} \right) z_{146} + \frac{3}{2} e^2 z_{150} - \frac{3}{2} \frac{e^2}{2} z_{149} \right\} \frac{\gamma}{a^2} \sin y \\ &= \left[146 \right] \\ &+ \left\{ \left(1 + \frac{3}{2} \frac{e^2}{2} \right) z_{147} + \frac{3}{2} \frac{e^2}{2} z_{151} + \frac{3}{2} \frac{e^2}{2} z_{153} \right\} \frac{\gamma}{a^2} \sin \left(2 t - y \right) \\ &= \left\{ \left(1 + \frac{3}{2} \frac{e^2}{2} \right) z_{148} + \frac{3}{2} \frac{e^2}{2} z_{152} + \frac{3}{2} \frac{e^2}{2} z_{154} \right\} \frac{\gamma}{a^2} \sin \left(2 t + y \right) \\ &= \left\{ \left(1 + \frac{3}{2} \frac{e^2}{2} \right) z_{148} + \frac{3}{2} \frac{e^2}{2} z_{152} + \frac{3}{2} \frac{e^2}{2} z_{154} \right\} \frac{\gamma}{a^2} \sin \left(2 t + y \right) \end{aligned}$$

^{*} This multiplication of z by r^{-3} may be effected at once by means of Table II.

$$+ \left\{z_{149} - \frac{3}{2} z_{146}\right\} \frac{e\gamma}{a^2} \sin(x-y) + \left\{z_{150} + \frac{3}{2} z_{146}\right\} \frac{e\gamma}{a^2} \sin(x+y) \right.$$

$$\left[[149] \right]$$

$$+ \left\{z_{151} + \frac{3}{2} z_{147}\right\} \frac{e\gamma}{a^2} \sin(2t-x-y) + \left\{z_{152} + \frac{3}{2} z_{148}\right\} \frac{e\gamma}{a^2} \sin(2t-x+y) \right.$$

$$\left[[151] \right]$$

$$+ \left\{z_{153} + \frac{3}{2} z_{147}\right\} \frac{e\gamma}{a^2} \sin(2t+x-y)$$

$$\left[[153] \right]$$

$$+ \left\{z_{154} + \frac{3}{2} z_{148}\right\} \frac{e\gamma}{a^2} \sin(2t+x+y) + z_{155} \frac{e\gamma}{a^2} \sin(x-y) + z_{156} \frac{e\gamma}{a^4} \sin(x+y) \right.$$

$$\left[[154] \right]$$

$$+ \left\{z_{164} + \frac{3}{2} z_{149} - \frac{9}{4} z_{149}\right\} \frac{e\gamma}{a^2} \sin(2t-y) + \left\{z_{162} + \frac{3}{2} z_{150} + \frac{9}{4} z_{146}\right\} \frac{e\gamma}{a^3} \sin(2x+y) \right.$$

$$\left[[162] \right]$$

$$+ \left\{z_{164} + \frac{3}{2} z_{151} + \frac{9}{4} z_{147}\right\} \frac{e^2\gamma}{a^2} \sin(2t-2x-y)$$

$$\left[[163] \right]$$

$$+ \left\{z_{165} + \frac{3}{2} z_{153} + \frac{9}{4} z_{147}\right\} \frac{e^2\gamma}{a^2} \sin(2t-2x+y)$$

$$\left[[164] \right]$$

$$+ \left\{z_{165} + \frac{3}{2} z_{153} + \frac{9}{4} z_{147}\right\} \frac{e^2\gamma}{a^2} \sin(2t+2x-y)$$

$$\left[[165] \right]$$

$$+ \left\{z_{165} + \frac{3}{2} z_{153} + \frac{9}{4} z_{147}\right\} \frac{e^2\gamma}{a^2} \sin(2t+2x-y)$$

$$\left[[166] \right]$$

$$+ \left\{z_{166} + \frac{3}{2} z_{155}\right\} \frac{ee_{1}\gamma}{a^3} \sin(x+z-y) + \left\{z_{169} + \frac{3}{2} z_{155}\right\} \frac{ee_{1}\gamma}{a^3} \sin(x+z+y)$$

$$\left[[167] \right]$$

$$\left[[168] \right]$$

$$+ \left\{z_{169} + \frac{3}{2} z_{157}\right\} \frac{ee_{1}\gamma}{a^3} \sin(2t+x-z-y) + \left\{z_{179} + \frac{3}{2} z_{155}\right\} \frac{ee_{1}\gamma}{a^3} \sin(2t-x-z+y)$$

$$\left[[170] \right]$$

$$+ \left\{z_{171} + \frac{3}{2} z_{155}\right\} \frac{ee_{1}\gamma}{a^3} \sin(2t+x+z-y) + \left\{z_{179} + \frac{3}{2} z_{155}\right\} \frac{ee_{1}\gamma}{a^3} \sin(2t-x+z+y)$$

$$\left[[172] \right]$$

$$+ \left\{z_{175} + \frac{3}{2} z_{155}\right\} \frac{ee_{1}\gamma}{a^3} \sin(2t-x+z-y) + \left\{z_{176} + \frac{3}{2} z_{155}\right\} \frac{ee_{1}\gamma}{a^3} \sin(2t-x+z+y)$$

$$\left[[172] \right]$$

$$+ \left\{z_{177} + \frac{3}{2} z_{155}\right\} \frac{ee_{1}\gamma}{a^3} \sin(2t-x+z-y) + \left\{z_{176} + \frac{3}{2} z_{155}\right\} \frac{ee_{1}\gamma}{a^3} \sin(2t-x+z+y)$$

$$\left[[173] \right]$$

$$+ \left\{z_{177} + \frac{3}{2} z_{157}\right\} \frac{ee_{1}\gamma}{a^3} \sin(2t-x+z-y) + \left\{z_{176} + \frac{3}{2} z_{155}\right\} \frac{ee_{1}\gamma}{a^3} \sin(2t-x+z+y)$$

$$\left[[175] \right]$$

$$+ \left\{z_{177} + \frac{3}{2} z_{157}\right\} \frac{ee_{1}\gamma}{a^3} \sin(2t-x+z-y) + \left\{z_{176} + \frac{3}{2} z_{155}\right\} \frac{ee_{1}\gamma}{a^3} \sin(2t-x+z+y)$$

$$\left[[176] \right]$$

$$\begin{split} s &= \frac{z}{r} \text{ nearly,} \\ &= \left\{ z_{146} + \frac{e^2}{2} \, z_{150} + \frac{e^2}{2} \, z_{149} \right\} \gamma \sin y \\ &+ \left\{ z_{147} + \frac{e^2}{2} \, z_{151} + \frac{e^2}{2} \, z_{153} \right\} \gamma \sin \left(2 \, t - y \right) \\ &+ \left\{ z_{148} + \frac{e^2}{2} \, z_{152} + \frac{e^2}{2} \, z_{154} \right\} \gamma \sin \left(2 \, t + y \right) + \&c. \\ &\frac{\mathrm{d}^2 \cdot r^2}{2 \cdot \mathrm{d} \, t^2} - \frac{\mu}{r} + \frac{\mu}{a} + 2 \int \! \mathrm{d} \, R + r \left(\frac{\mathrm{d} \, R}{\mathrm{d} \, r} \right) = 0 \\ &\frac{\mathrm{d}^2 \, z}{\mathrm{d} \, t^2} + \frac{\mu \, z}{r^3} + \frac{m_i \, z}{\left\{ r^2 - 2 \, r \, r^2 \cos \left(\lambda - \lambda \right) + r_i^2 \right\}^{\frac{5}{2}}} \\ &r^4 \cdot \frac{\mathrm{d} \, \lambda^2}{\mathrm{d} \, t^2} = h^2 - 2 \int r^2 \left(\frac{\mathrm{d} \, R}{\mathrm{d} \, \lambda^2} \right) \mathrm{d} \, \lambda^2 \end{split}$$

Neglecting the square of the disturbing force

$$\frac{-\mathrm{d}^2 \cdot \mathrm{r}^3 \delta \cdot \frac{1}{r}}{\mathrm{d} t^2} - \mu \delta \cdot \frac{1}{r} + 2 \int \mathrm{d} R + r \left(\frac{\mathrm{d} R}{\mathrm{d} r} \right) = 0$$

$$\frac{\mathrm{d}^2 z}{\mathrm{d} t^2} + \frac{\mu z}{r^3} + \frac{m_i z}{r_i^3} + \frac{3 m_i z \, \dot{r} \, \dot{r} \cos \left(\lambda^{\prime} - \lambda \right)}{r_i^5} = 0$$

$$\frac{\mathrm{d}^2 \cdot \delta z}{\mathrm{d} t^2} + \frac{3 \mu s \delta \cdot \frac{1}{r}}{r} + \frac{\mu \delta \cdot z}{r^3} + \frac{m_i z}{r_i^3} + \frac{3 \mu_i z \, \dot{r} \, \dot{r} \cos \left(\lambda^{\prime} - \lambda \right)}{r_i^5} = 0$$

$$\frac{\mathrm{d} \lambda^{\prime}}{\mathrm{d} t} = \frac{h \left(1 + s^2 \right)}{r^2} - \frac{\left(1 + s^2 \right)}{r^2} \int \left(\frac{\mathrm{d} R}{\mathrm{d} \lambda^{\prime}} \right) \, \mathrm{d} t$$

$$r \left(\frac{\mathrm{d} R}{\mathrm{d} r} \right) = a \left(\frac{\mathrm{d} R}{\mathrm{d} a} \right), \, \frac{\mathrm{d} R}{\mathrm{d} \lambda^{\prime}} = \frac{\mathrm{d} R}{\mathrm{d} t}, \, \text{(t being used for n $t - n_i t)}.$$

Integrating the equation of p. 270, line 9, by the method of indeterminate coefficients, neglecting the cubes and higher powers of e in order to obtain a first approximation, m being equal to $\frac{n_i}{n}$ as in the notation of M. Damoiseau;

$$-r_0 - \frac{m_i a^3}{2 \mu a_i^3} \left\{ 1 + \frac{3}{2} e^2 + \frac{3}{2} e_i^2 - \frac{3}{2} \gamma^2 \right\} = 0$$

$$4 (1 - m)^2 \left\{ (1 + 3 e^2) r_1 - \frac{3 e^2}{2} \left\{ r_3 + r_4 \right\} \right\} - r_1$$

$$-\frac{3m_{i}a^{3}}{2\mu a_{i}^{3}}\left\{1-\frac{5}{2}e^{2}-\frac{5}{2}e_{i}^{3}-\frac{\gamma^{2}}{2}\right\}\left\{\frac{1}{1-m}+1\right\}=0$$

$$c^{2}*\left\{1-3r_{0}\right\}-1+\frac{2m_{i}a^{3}}{\mu a^{3}}=0$$

$$(2-2m-c)^{2}\left\{r_{3}-\frac{3}{2}r_{1}\right\}-r_{3}+\frac{9}{2}\frac{m_{i}}{\mu a_{i}^{3}}\left\{\frac{2-c}{2-2m-c}+1\right\}=0$$

$$(2-2m+c)^{2}\left\{r_{4}-\frac{3}{2}r_{1}\right\}-r_{4}-\frac{3}{2}\frac{m_{i}}{\mu a_{i}^{3}}\left\{\frac{2+c}{2-2m+c}+1\right\}=0$$

$$m^{2}r_{5}-r_{5}-\frac{3}{2}\frac{m_{i}}{\mu a_{i}^{3}}=0$$

$$(2-3m)^{2}r_{6}-r_{6}-\frac{21}{4}\frac{m_{i}}{\mu a_{i}^{3}}\left\{\frac{2}{2-3m}+1\right\}=0$$

$$(2-m)^{2}r_{7}-r_{7}+\frac{3}{4}\frac{m_{i}}{\mu a_{i}^{3}}\left\{\frac{2}{2-m}+1\right\}=0$$

$$(2-m)^{2}r_{7}-r_{7}+\frac{3}{4}\frac{m_{i}}{\mu a_{i}^{3}}\left\{\frac{2}{2-m}+1\right\}=0$$

$$(2-2m-2c)^{2}\left\{r_{0}-\frac{3}{2}r_{3}\right\}-r_{5}-\frac{15}{4}\frac{m_{i}}{\mu a_{i}^{3}}\left\{\frac{2-2c}{2-2m-2c}+1\right\}=0$$

$$(2-2m+2c)^{2}\left\{r_{10}-\frac{3}{2}r_{4}\right\}-r_{10}-\frac{3}{2}\frac{m_{i}}{\mu a_{i}^{3}}\left\{\frac{2+2c}{2-2m+2c}+1\right\}=0$$

$$(c+m)^{2}\left\{r_{11}-\frac{3}{2}r_{5}\right\}-r_{11}+\frac{3}{2}\frac{m_{i}}{\mu a_{i}^{3}}\left\{\frac{c}{c+m}+1\right\}=0$$

$$(2-3m-c)^{2}\left\{r_{12}-\frac{3}{2}r_{5}\right\}-r_{13}+\frac{3}{4}\frac{m_{i}}{\mu a_{i}^{3}}\left\{\frac{c}{2-3m-c}+1\right\}=0$$

$$(2-m+c)^{2}\left\{r_{13}-\frac{3}{2}r_{7}\right\}-r_{13}+\frac{3}{4}\frac{m_{i}}{\mu a_{i}^{3}}\left\{\frac{2+c}{2-m+c}+1\right\}=0$$

$$(c-m)^{2}\left\{r_{14}-\frac{3}{2}r_{5}\right\}-r_{14}+\frac{3}{2}\frac{m_{i}}{\mu a_{i}^{3}}\left\{\frac{c}{c-m}+1\right\}=0$$

$$(c-m)^{2}\left\{r_{14}-\frac{3}{2}r_{5}\right\}-r_{14}+\frac{3}{2}\frac{m_{i}}{\mu a_{i}^{3}}\left\{\frac{c}{c-m}+1\right\}=0$$

^{*} The letter c does not strictly denote the same quantity as in the notation of M. Damoiseau, or in that of the Mathematical Tracts, p. 33.

$$(2-3m+c)^{2} \left\{ r_{16} - \frac{3}{2} r_{6} \right\} - r_{16} - \frac{21}{4} \frac{m_{i}}{\mu} \frac{a^{3}}{a_{i}^{3}} \left\{ \frac{2+c}{2-3m+c} + 1 \right\} = 0$$

$$4 m^{2} r_{17} - r_{17} - \frac{9}{4} \frac{m_{i}}{\mu} \frac{a^{3}}{a_{i}^{3}} = 0$$

$$(2-4m)^{2} r_{18} - r_{18} - \frac{51}{4} \frac{m_{i}}{\mu} \frac{a^{3}}{a_{i}^{3}} \left\{ \frac{2}{2-4m} + 1 \right\}$$

$$4 r_{10} - r_{10} = 0$$

The equation for determining z may be integrated in the same way.

$$-g^{2}z_{146} + 3r_{0} + z_{146} + \frac{m_{l}}{\mu} \frac{a^{3}}{a_{l}^{3}} = 0$$

$$-\left\{2\left(1 - m\right) - g\right\}^{2}z_{147} - \frac{3r_{1}}{2} + z_{147} = 0$$

$$-\left\{2\left(1 - m\right) + g\right\}^{2}z_{148} + \frac{3r_{1}}{2} + z_{148} = 0$$

$$-\left\{c - g\right\}^{2}z_{149} + \frac{3}{2}r_{6} + z_{149} - \frac{3}{2}z_{146} + \frac{3m_{l}}{2\mu} \frac{a^{3}}{a_{l}^{3}} = 0$$

$$-\left\{c + g\right\}^{2}z_{150} + \frac{9}{2}r_{6} + z_{150} + \frac{3}{2}z_{146} + \frac{m_{l}}{\mu} \frac{a^{3}}{a_{l}^{3}} = 0$$

$$-\left\{c + g\right\}^{2}z_{150} + \frac{9}{2}r_{6} + z_{150} + \frac{3}{2}z_{146} + \frac{m_{l}}{\mu} \frac{a^{3}}{a_{l}^{3}} = 0$$

$$-\left\{2\left(1 - m\right) - c - g\right\}^{2}z_{147} + 3\left\{-\frac{3r_{1}}{4} - \frac{r_{3}}{2}\right\} + z_{151} + \frac{3}{2}z_{147} = 0$$

$$-\left\{2\left(1 - m\right) - c + g\right\}^{2}z_{148} + 3\left\{-\frac{r_{1}}{4} + \frac{r_{3}}{2}\right\} + z_{152} + \frac{3}{2}z_{148} = 0$$

$$-\left\{2\left(1 - m\right) + c - g\right\}^{2}z_{149} + 3\left\{\frac{r_{1}}{4} - \frac{r_{4}}{2}\right\} + z_{153} + \frac{3}{2}z_{147} = 0$$

$$-\left\{2\left(1 - m\right) + c + g\right\}^{2}z_{150} + 3\left\{\frac{3}{4}r_{1} + \frac{r_{4}}{2}\right\} + z_{154} + \frac{3}{2}z_{148} = 0$$

$$-\left\{m - g\right\}^{2}z_{151} + \frac{3}{2}r_{5} + z_{155} - \frac{3m_{l}}{2\mu} \frac{a^{3}}{a_{l}^{3}} = 0$$

$$-\left\{m + g\right\}^{2}z_{152} + \frac{3}{2}r_{5} + z_{156} + \frac{3m_{l}}{2\mu} \frac{a^{3}}{a_{l}^{3}} = 0$$

$$-\left\{2\left(1 - m\right) - m - g\right\}^{2}z_{153} - \frac{3}{2}r_{6} + z_{157} = 0$$

$$-\left\{2\left(1 - m\right) - m + g\right\}^{2}z_{154} + \frac{3}{2}r_{6} + z_{159} = 0$$

$$-\left\{2\left(1 - m\right) - m + g\right\}^{2}z_{154} + \frac{3}{2}r_{6} + z_{159} = 0$$

$$-\left\{2\left(1 - m\right) - m - g\right\}^{2}z_{155} - \frac{3}{2}r_{7} + z_{159} = 0$$

$$-\left\{2\left(1 - m\right) + m - g\right\}^{2}z_{155} - \frac{3}{2}r_{7} + z_{159} = 0$$

$$-\left\{2\left(1-m\right)+m+g\right\}^{2}z_{156}+\frac{3}{2}r_{7}+z_{160}=0$$

$$\frac{d\lambda}{dt}=\frac{h}{r^{2}}+\frac{2h}{r}\hat{s}\cdot\frac{1}{r}+\frac{hz^{2}}{r^{4}}-\frac{(1+s^{3})}{r^{2}}\int\left(\frac{dR}{d\lambda}\right)dt$$

$$\lambda^{2}=\frac{h}{a^{2}}\left\{1+\frac{e^{3}}{2}+\frac{\gamma^{3}}{2}+2r_{0}\right\}t+\frac{2e\left(1+r_{0}\right)}{e}\sin x+\frac{5e^{3}\left(1+r_{0}\right)}{4e}\sin 2x$$

$$+\left\{2r_{1}+e^{6}\left(r_{3}+r_{4}\right)-\left\{-\left(1-\frac{5}{2}e^{3}-\frac{5}{2}e^{3}-\frac{\gamma^{2}}{2}\right)\frac{3}{4\left(1-m\right)}+\frac{9e^{2}}{2\left(2-2m-c\right)}\right\}$$

$$-\frac{3e^{2}}{2\left(2-2m+c\right)}\right\}\frac{m_{1}}{\mu}\frac{a^{3}}{a^{3}}\right\}\frac{1}{2\left(1-m\right)}\sin 2t$$

$$+\left\{2r_{3}+e^{3}r_{1}-\left\{\frac{9}{2\left(2-m-c\right)}-\frac{3}{2\left(2-m\right)}\right\}\frac{m_{1}a^{3}}{\mu}\frac{a^{3}}{a^{3}}\right\}\frac{e}{(2-2m-c)}\sin \left(2t-x\right)$$

$$+\left\{2r_{4}+e^{3}r_{1}-\left\{-\frac{3}{2\left(2-m+c\right)}-\frac{3}{2\left(2-m\right)}\right\}\frac{m_{1}a^{3}}{\mu}\frac{a^{3}}{a^{3}}\right\}\frac{e}{(2-m+c)}\sin \left(2t+x\right)$$

$$+\frac{2r_{5}}{m}\sin z$$

$$+\left\{2r_{6}+\frac{21}{4\left(2-3m\right)}\frac{m_{1}a^{3}}{\mu}\frac{a^{3}}{a^{3}}\right\}\frac{e_{1}}{(2-m)}\sin \left(2t-z\right)$$

$$+\left\{2r_{0}+r_{3}-\left\{-\frac{15}{4\left(2-2m-2c}+\frac{9}{2\left(2-2m-c\right)}\right\}\frac{m_{1}a^{3}}{\mu}\frac{a^{3}}{a^{3}}\right\}\frac{e^{3}}{2\left(1-m-c\right)}\sin \left(2t-2x\right)$$

$$+\left\{2r_{10}+r_{4}-\left\{-\frac{3}{2\left(2-2m+2c\right)}-\frac{3}{2\left(2-m+c\right)}\right\}\frac{m_{1}a^{3}}{\mu}\frac{a^{3}}{a^{3}}\right\}\frac{e^{3}}{2\left(1-m-c\right)}\sin \left(2t-2x\right)$$

$$+\left\{2r_{11}+r_{5}\right\}\frac{e^{2}}{\left(c+m\right)}\sin \left(x+z\right)$$

$$+\left\{2r_{13}+r_{6}-\left\{\frac{63}{4\left(2-3m-c\right)}-\frac{21}{4\left(2-3m\right)}\right\}\frac{m_{1}a^{3}}{\mu}\frac{a^{3}}{a^{3}}\right\}\frac{e^{4}}{\left(2-m+c\right)}\sin \left(2t-x-z\right)$$

$$+\left\{2r_{13}+r_{7}-\left\{\frac{3}{4\left(2-m+c\right)}\sin \left(x+z\right)\right\}\frac{m_{1}a^{3}}{\mu}\right\}\frac{e^{4}}{a^{3}}\right\}\frac{e^{4}}{\left(2-m+c\right)}\sin \left(2t+x-z\right)$$

Considering the terms which depend on the square of the disturbing force

$$\frac{d^2 \cdot r^2}{2 d t^2} - \frac{\mu}{r} + \frac{\mu}{a} + 2 \int d R + r \left(\frac{d R}{d r} \right) = 0$$

$$\frac{d^{2} \cdot r^{2}}{2 d t^{2}} - \frac{d^{2} \cdot r^{3} \delta \cdot \frac{1}{r}}{d t^{2}} + \frac{3 d^{2} \cdot r^{4} \left(\delta \cdot \frac{1}{r}\right)^{2}}{2 d t^{2}} - \frac{\mu}{r} + \frac{\mu}{a} + 2 \int dR + r \left(\frac{dR}{dr}\right) = 0$$

$$\frac{d^{2} z}{d t^{2}} + \frac{\mu z}{r^{3}} + \frac{m_{i} z}{r_{i}^{3}} - \frac{3 m_{i} z r r \cos(\lambda^{i} - \lambda)}{r_{i}^{5}} = 0.$$

$$\frac{d\lambda^{i}}{dt} = \frac{h}{r^{2}} \left\{ 1 - \frac{1}{h} \int \left(\frac{dR}{d\lambda^{i}}\right) dt \left\{ 1 - \frac{1}{h^{2}_{*}} \int \left(\frac{dR}{d\lambda^{i}}\right) dt \right\} - \frac{1}{2 h^{2}} \left\{ \int \left(\frac{dR}{d\lambda^{i}}\right) dt \right\}^{2}$$

$$= \frac{h (1 + s^{2})}{r^{2}} - \frac{(1 + s^{2})}{r^{2}} \int \left(\frac{dR}{d\lambda^{i}}\right) dt + \frac{(1 + s^{2})}{2 r^{2} h} \left\{ \int \left(\frac{dR}{d\lambda^{i}}\right) dt \right\}^{2}$$

- d R = the differential of R, supposing n t only variable + the differential of R, with regard to $n_i t$ only in as much as it is contained in the terms in r, λ and s due to the perturbations; hence
- d R = the differential of R, supposing only n t variable $+ \frac{dR}{dr} \cdot d \cdot \delta r' + \frac{dR}{dr} \cdot d \cdot \delta \lambda' + \frac{dR}{dr} \cdot d \cdot \delta s' \cdot d \cdot \delta r'$, d $\cdot \delta \lambda$, and d $\cdot \delta s$, being restrained to mean the differentials of those quantities with regard to $n_t t$ only.

$$\delta R = \left(\frac{\mathrm{d}\,R}{\mathrm{d}\,r'}\right)\delta \,r' + \left(\frac{\mathrm{d}\,R}{\mathrm{d}\,\lambda}\right)\delta \,\lambda' + \left(\frac{\mathrm{d}\,R}{\mathrm{d}\,s}\right)\delta \,s = -\,a\left(\frac{\mathrm{d}\,R}{\mathrm{d}\,a}\right)\,r'\,\delta \cdot \frac{1}{r'} + \left(\frac{\mathrm{d}\,R}{\mathrm{d}\,t}\right)\delta \,\lambda' + \left(\frac{\mathrm{d}\,R}{\mathrm{d}\,s}\right)\delta \,s,$$

(t being used in the sense $n t - n_i t$.) $\left(\frac{\mathrm{d} R}{\mathrm{d} s}\right) \delta s = \frac{r^2}{2 r_i^3} s \delta s$ nearly.

$$\left(\frac{\mathrm{d}\,R}{\mathrm{d}\,r}\right)\mathrm{d}\cdot\delta\,r + \left(\frac{\mathrm{d}\,R}{\mathrm{d}\,\lambda'}\right)\mathrm{d}\cdot\delta\,\lambda' + \left(\frac{\mathrm{d}\,R}{\mathrm{d}\,s}\right)\mathrm{d}\cdot\delta\,s = -a\left(\frac{\mathrm{d}\,R}{\mathrm{d}\,a}\right)\mathrm{d}\cdot\mathbf{r}\,\delta\cdot\frac{1}{r} + \left(\frac{\mathrm{d}\,R}{\mathrm{d}\,t}\right)\mathrm{d}\cdot\delta\,\lambda' + \left(\frac{\mathrm{d}\,R}{\mathrm{d}\,s}\right)\mathrm{d}\cdot\delta\,s$$

 $d \cdot r \delta_{\overrightarrow{r}}^{1}$, $d \cdot \delta \lambda$ and $d \cdot \delta s$ being restrained to mean the differentials of those quantities with regard to n t only.

$$\delta \cdot r \left(\frac{\mathrm{d} R}{\mathrm{d} r} \right) = \mathrm{d} \cdot \frac{r \left(\frac{\mathrm{d} R}{\mathrm{d} r} \right)}{\mathrm{d} r'} \cdot \delta r' + \mathrm{d} \cdot \frac{r \left(\frac{\mathrm{d} R}{\mathrm{d} r} \right)}{\mathrm{d} \lambda'} \delta \lambda' + \mathrm{d} \cdot \frac{r \left(\frac{\mathrm{d} R}{\mathrm{d} r} \right)}{\mathrm{d} s} \delta s$$

$$= -a \, \mathrm{d} \cdot \frac{r \left(\frac{\mathrm{d} R}{\mathrm{d} r} \right)}{\mathrm{d} a} r' \cdot \delta \cdot \frac{1}{r'} + \mathrm{d} \cdot \frac{r \left(\frac{\mathrm{d} R}{\mathrm{d} r} \right)}{\mathrm{d} t} \cdot \delta \lambda' + \mathrm{d} \cdot \frac{r \left(\frac{\mathrm{d} R}{\mathrm{d} r} \right)}{\mathrm{d} s} \delta s$$

$$\delta \cdot \left(\frac{\mathrm{d} R}{\mathrm{d} \lambda'} \right) = -a \cdot \mathrm{d} \cdot \frac{\left(\frac{\mathrm{d} R}{\mathrm{d} \lambda'} \right)}{\mathrm{d} a} r' \delta \cdot \frac{1}{r'} + \mathrm{d} \cdot \frac{\left(\frac{\mathrm{d} R}{\mathrm{d} \lambda} \right)}{\mathrm{d} t} \delta \lambda' + \frac{\left(\frac{\mathrm{d} R}{\mathrm{d} \lambda'} \right)}{\mathrm{d} s} \delta s$$

A similar theorem exists with the quantity $\delta \cdot \frac{dR}{dz}$, and it will readily be seen that all the developments δR , $\delta \cdot r \left(\frac{dR}{dr}\right)$, $\delta \cdot \left(\frac{dR}{d\lambda}\right)$ and $\delta \cdot \left(\frac{dR}{dz}\right)$ may be effected very easily by means of Table II.

Similarly, if δ' denote the variation due to the disturbance of the earth by the moon,

$$\delta' R = -a_i d \cdot \left(\frac{dR}{da_i}\right) r_i \delta \cdot \frac{1}{r_i} - d \cdot \left(\frac{dR}{dt}\right) \delta \lambda_i$$

In d R the terms which arise from

$$- a \left(\frac{\mathrm{d}\,R}{\mathrm{d}\,a} \right) \mathrm{d} \cdot r \, \delta \cdot \frac{1}{r} \, + \left(\frac{\mathrm{d}\,R}{\mathrm{d}\,t} \right) \mathrm{d} \cdot \delta \lambda + \left(\frac{\mathrm{d}\,R}{\mathrm{d}\,s} \right) \mathrm{d} \cdot \delta s$$

are multiplied by the small quantity m.

Considering in $r'\left(\frac{dR}{dr}\right)$ and R the terms multiplied by $\frac{a^2}{a_i^3}$,

$$\vec{r} \left(\frac{\mathrm{d} R}{\mathrm{d} \vec{r}} \right) = 2 R, \qquad \delta \cdot \vec{r} \left(\frac{\mathrm{d} R}{\mathrm{d} \vec{r}} \right) = 2 \delta R;$$

considering the terms multiplied by $\frac{a^3}{a_i^4}$.

$$\vec{r} \cdot \left(\frac{\mathrm{d} R}{\mathrm{d} \vec{r}} \right) = 3 R, \quad \delta \cdot \vec{r} \cdot \left(\frac{\mathrm{d} R}{\mathrm{d} \vec{r}} \right) = 3 \delta R$$

Hence the value of $r'\left(\frac{dR}{dr'}\right)$ and $\delta \cdot r'\left(\frac{dR}{dr'}\right)$ may at once be inferred from R and δR .

I reserve the formation of these developments and of the final equations for determining the coefficients of the different inequalities to another opportunity. These equations are voluminous when all sensible quantities are taken into account; but they are formed with so much facility by means of Table II., that error is not likely to arise in this part of the process. Error is more, I think, to be apprehended in the terms of R multiplied by the cubes and fourth powers of the eccentricities; the rest have been verified by an independent method. See p. 39.

A	dd	liti	on	to	Ta	ble	T.
\boldsymbol{L}	uu	11.0	111	ω		ω	

	146	149	150			146	149	150			146	149	150	
1 {	148 147	153 152	154 151	} 1	147 {	1 63	69 3	4 67	}147	155 {	5 71	- 83 - 14	- ¹¹ - ⁹⁰	brace 155
2 {	150 149	161 162	162 146	} 2	148 {	64 1	4 68	70 3	}148	156 {	72 5	- 11 - 89	84 14	} 156
3 {	152 151	147 164	148 163	} 3	149 {	$\begin{array}{c} 2 \\ 65 \end{array}$	77 0	- 62	}149	157 {	6 73	93 12	16 85	} 157
4 {	154 153	165 148	166 147	} 4	150 {	66 2	8 62	78 0	}150	158 {	$^{74}_{6}$	16 86	94 12	} 158
5 {	156 155	167 173	168 174	} 5	$151\Bigl\{$. 67	63 9	1 79	}151	$\boldsymbol{159}\Big\{$	7 75	87 15	13 91	} 159
6 {	158 157	169 170	178 169	} 6	152 {	68 3	1 80	64 9	} 152	160 {	76 7	13 92	88 15	}160
7 {	160 159	171 176	172 175	} 7	$\boldsymbol{153} \Big\{$	$^{4}_{69}$	81 1	10 63	}153					
146 {	62	-65	- ⁶⁶ - ²	}146	$\boldsymbol{154} \Big\{$	70 4	10 64	82 1	$\}$ 154					

	161	162			161	162	
{	165 164	166 163	} 1	147 {	81 9	10 79	} 147
$146\bigl\{$	- 77	- ⁷⁸	}146	$148 \Big\{$	10 80	82 9	}148

Addition to Table II.

146	149	150	146	149	150	146	149	150
$1 \left\{ \begin{array}{c} 147 \\ 148 \end{array} \right.$	152 153	$\begin{bmatrix} 151 \\ 154 \end{bmatrix}$ 1	$10 \ \left\{ \begin{array}{c} 165 \\ 166 \end{array} \right.$	154	$\begin{array}{c} 153 \\ \end{array}$ $\bigg\}$ 10	$64\left\{ \begin{array}{c} 148 \\ \end{array} \right.$	154	$\frac{152}{\dots}$ 64
$2 \left\{ \begin{array}{c} 149 \\ 150 \end{array} \right.$	146	$\begin{bmatrix} \\ -146 \end{bmatrix}$ 2	11 $\left\{\begin{array}{c} 167 \\ 168 \end{array}\right.$	156	$\frac{155}{}$ }11	65 { 149	-146	:::::: }65
$3 \left\{ \begin{array}{c} 151 \\ 152 \end{array} \right.$	 147	····· } 3	$12 \left\{ \begin{array}{c} 169 \\ 170 \end{array} \right.$	 157	158 } 12	$66\left\{ \begin{array}{c} 150 \\ \end{array} \right.$	•••••	$^{146}_{}$ $\}$ 66
$4 \left\{ \begin{array}{c} 153 \\ 154 \end{array} \right.$	148	147 } 4	$13 \left\{ \begin{array}{c} 171 \\ 172 \end{array} \right.$	160	159 13	67 { ''''151		"";; }67
$5 \left\{ \begin{array}{c} 155 \\ 156 \end{array} \right.$		} 5	$14 \left\{ \begin{array}{c} 173 \\ 174 \end{array} \right.$	 155	$\begin{bmatrix} \\ -156 \end{bmatrix}$ 14	$68 \left\{ \begin{array}{c} 152 \\ \end{array} \right.$	148	::::: } 68
$6 \left\{ \begin{array}{c} 157 \\ 158 \end{array} \right.$::::: } 6	$15 \left\{ \begin{array}{c} 175 \\ 176 \end{array} \right.$	 159	$\frac{160}{160}$ } 15	, 69 { ······	147	::::: }69
7 { \begin{subarray}{c} 159 \\ 160 \end{subarray}}		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$16 \left\{ \begin{array}{c} 177 \\ 178 \end{array} \right.$	158 	157 } 16	$70\left\{egin{array}{c}154\\\end{array} ight.$	•••••	$\frac{148}{}$ $\}$ 70
8 { 161 162	150	149 } 8	62 { 146	150		$71\left\{\begin{array}{cc} \\ 155 \end{array}\right.$	•••••	::::: }71
$9 \left\{ \begin{array}{c} 163 \\ 164 \end{array} \right.$	151	$\left \begin{array}{c} \cdots \\ 152 \end{array}\right\} \;\; 9$	63 {	151 	$\begin{bmatrix} \\ 153 \end{bmatrix} 63$	$72 \left\{ \begin{array}{c} 156 \\ \end{array} \right.$::::: }72

146	149	150	146	149	150	146	149	150
73 {		<u>}73</u>	94 {		} 94	$166 \left\{ \begin{array}{c} 10 \\ \end{array} \right.$		}166
$74 \left\{ \begin{array}{c} 158 \\ \dots \end{array} \right.$	•••••	} 7 4	$146 \left\{ \begin{array}{cc} \\ 62 \end{array} \right $		$\begin{bmatrix} \dots \\ -2 \end{bmatrix}$ 146	167 {	5	:::::}167
75 {		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$147 \left\{ \begin{array}{cc} 63 \\ 1 \end{array} \right]$	3	····· ₄ } 147	$168\left\{ \begin{array}{c} 11\\\end{array} \right.$		$$ $\Big\}$ 168
76 {		} 76	$148 \left\{ \begin{array}{c} 1 \\ 64 \end{array} \right.$	4	$\begin{bmatrix} 3 \\ 148 \end{bmatrix}$	$169\left\{\begin{array}{cc}\\12\end{array}\right\}$	6	$""6$ $\left.169$
77 { "	149	} 77	$149 \left\{ \begin{array}{c} \cdots \\ 2 \end{array} \right.$	•••••	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$170 \left\{ \begin{array}{c} 12 \\ \end{array} \right.$	6	:::::}170
78 { \frac{162}{}		$\begin{bmatrix} 150 \\ \dots \end{bmatrix}$ $\left. \begin{array}{c} 78 \\ \end{array} \right.$	$150 \left\{ \begin{array}{c} 2 \\ \dots \end{array} \right.$		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	171 {	7	:::::}171
79 {		$\begin{bmatrix} \cdots \\ 151 \end{bmatrix}$ 79	$151 \left\{ \begin{array}{cc} \\ 3 \end{array} \right.$		$\begin{bmatrix} \cdots \\ 1 \end{bmatrix}$ 151	$172 \left\{ \begin{array}{c} 13 \\ \dots \end{array} \right.$		$\left \begin{array}{c} 7 \\ 172 \end{array} \right $
80 { 164	152	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$152 \left\{ \begin{array}{c} 3 \\ \dots \end{array} \right.$	····i	$\left[\begin{array}{c} \cdots \\ \end{array}\right]$ 152	173 {	_ 5	::::::}173
81 {	153 	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$153 \left\{ \begin{array}{c} \cdots \cdots \\ 4 \end{array} \right.$	1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$174 \left\{ \begin{array}{c} 14 \\ \end{array} \right.$		$\begin{bmatrix} \cdots \\ - & 5 \end{bmatrix}$ 174
$82 \left\{\begin{array}{c} 166\\\end{array}\right.$		$\begin{bmatrix} 154 \\ \dots \end{bmatrix}$ 82	$154 \left\{ \begin{array}{c} 4 \\ \dots \end{array} \right.$		$\begin{bmatrix} 1 \\ \end{bmatrix}$ 154	175 {		$\begin{bmatrix} \cdots \\ 7 \end{bmatrix}$ 175
83 {	155 	}83	$155\left\{\begin{array}{cc}{5}\\ \end{array}\right.$	•••••	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$176 \left\{ \begin{array}{c} 15 \\ \end{array} \right.$	7	} 176
$84 \left\{ \begin{array}{c} 168 \\ \end{array} \right.$		$\begin{bmatrix} 156 \\ \dots \end{bmatrix}$ 84	$156 \left\{ \begin{array}{c} 5 \\ \end{array} \right.$		} 156	177 {		:::::}177
$85 \left\{ \begin{array}{c} \\ 169 \end{array} \right.$		157 }85	157 {		····· } 157	$178 \left\{ \begin{array}{c} 16 \\ \end{array} \right.$		6 } 178
86 {	158	}86	$158 \left\{ \begin{array}{c} 6 \\ \dots \end{array} \right.$		} 158	179 {		::::::} 179
87 { ''''171	159	 }87	159 {	•••••	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$180\left\{\begin{array}{c} 17 \\\end{array}\right.$		} 180
88 { 172		160 }88	$160 \left\{ \begin{array}{c} 7 \\ \end{array} \right.$::::: }160	181 {		} 181
89 {	 156	\\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.	161 {8	2	:::::: } 161	$182 \left\{ \begin{array}{c} 18 \\ \end{array} \right.$		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
90 {	•••••	$\begin{bmatrix} \\ -155 \end{bmatrix}$ 90	162 {	₂	$\left \begin{array}{c}2\\\end{array}\right\}162$	183 {		······} 183
91 {		$\begin{array}{c} \\ 159 \end{array}$ } 91	$163 \left\{ \begin{array}{cc} \cdots \cdots \\ 9 \end{array} \right.$	•••••	$\left[\begin{array}{c} \cdots \\ 3 \end{array}\right]$ 163	$184 \left\{ \begin{array}{c} 19 \\ \end{array} \right.$		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
$92 \left\{ \begin{array}{c} 176 \\ \end{array} \right.$	160	} 92	$164 \left\{ \begin{array}{c} 9 \\ \end{array} \right.$	3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
93 {	157] ::::: } 93	$165 \left\{ \begin{array}{c} \\ 10 \end{array} \right.$	4] :::::: } 165			

161	162	161	162	161	162	161	162
$8\left\{\begin{array}{c}146\\\end{array}\right.$	} 8	78 {	$\begin{array}{c} 146 \\ \end{array}$ $\left. \begin{array}{c} 78 \end{array} \right.$	81 {	} 81	164 { ·····i	····· } 164
9 {	148 } 9	79 {	$\frac{147}{147}$ } 79	82 {	148 } 82	$165 \left\{ \begin{array}{c} 1 \\ \end{array} \right.$	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
10 {	$\left \begin{array}{c}147\\\end{array}\right\}$ 10	80 {	} 80	163 {	····· ₁ } 163	166 {	$\begin{bmatrix} 1 \\ \end{bmatrix}$ 166
77 { -146] 77						

On the Precession of the Equinoxes, supposing the Earth to revolve in a resisting medium.

In my last paper on Physical Astronomy, I gave expressions for the variations of the six constants which enter into the solution of this problem, upon the hypothesis that the body revolves in a medium devoid of resistance.

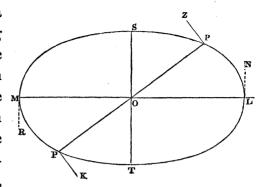
If we suppose a plane to revolve in a resisting medium, about an axis perpendicular to itself, the resistance of the medium can produce no effect, and the phenomena will only be modified in a slight degree by the friction of the plane surface against the medium. If, however, the inclination of the plane on the axis of rotation differs from 90°, the effect of the resistance of the medium becomes sensible, tending to retard the motion of the plane; the effect being greatest when the axis of rotation is parallel to the plane.

This principle is used in some machines, as in self-playing organs, to regulate the motion by means of a vane, of which the inclination to its axis of rotation can be varied at pleasure.

In the case of a sphere, whatever be the direction of the axis of rotation, this effect of the resistance is insensible; and also in the case of a solid of revolution when the axis of rotation coincides with the axis of the figure, but not If the difference of the latitude of the axis of rotation from 90° (supposing the equator from which the latitudes are reckoned to coincide with the equator of the figure) be at any time small, the mathematical investigation appears to show, that the effect of the resistance of the medium is to diminish continually this difference. In the case of the earth, this quantity is now insensible; but as the probability is small that this was the case in the first instance, may this circumstance arise from the resistance of a medium of small density acting for a great length of time? and can the change of climate on the surface of the earth, a change of which the probability is indicated by many geological phenomena, be explained in the same manner? It may be remarked, however, that the effect of a resisting medium in diminishing the eccentricities of the orbits of the planets is of the same order, and that these, although for the most part small, are far from having reached zero. The tendency of a resisting medium is also to diminish the major axes of the orbits of the planets; these effects, if they exist, will probably be most sensible

2 o

in the case of comets, not only on account of their great eccentricity, but also on account of their small density, in the same manner as a flock of any light substance is wafted by the gentlest wind and prevented from reaching the The eccentricity of the orbit of the comet of Halley in 1759 is known with great accuracy, and as its perturbations have been calculated with great care by MM. Damoiseau and de Pontecoulant, the eccentricity which it should have in 1835, when it will again visit this part of space, unless it be affected by a resisting medium, is also known with great precision. scarcely probable, however, that any change will be perceptible in one revolution, even if the cause exists; but the succeeding revolutions of this body will no doubt throw light upon this question. The ratio of the change of the semimajor axis to the change of the eccentricity, due to the action of the resisting medium, is known, being a function of the eccentricity, and independent of the constant, which depends upon the density of the medium; this ratio therefore may also tend to elucidate the question, if it can be determined by observation with sufficient accuracy.


Let x', y', z' be the co-ordinates of any point P corresponding to the elementary portion of the surface ds, and referred to axes passing through the centre of gravity and revolving with the body in motion.

Let P be the point of which the co-ordinates are x', y', z', A P the direction of the normal at the point P, B P perpendicular to the axis of instantaneous rotation, and cutting it in B, and C P the direction of motion of the point P. I suppose the resistance of the medium to create a force proportional to $v^2 \cos A P C ds$, acting in the direction of the normal A P upon the point P, v being the velocity of the point P.

Suppose the straight line MOPL to revolve about an axis passing through O, and perpendicular to it, and in the direc-

tion LN, the action of the resisting medium will be in the direction NL, on one side only of the line OL, upon all the points P between O and L, and upon all the points between MP it will be in the contrary direction RM, and on the other side of the line.

Now, let LSMT be the section of a cylinder revolving about an axis, passing through O perpendicular to the plane LSMT, and let the cylinder revolve in the direction LN. The action of the matrix resisting medium will be in the direction ZP, perpendicular to OP upon all the points P between LS; and in the contrary direction KP upon all the points,

P between TM. These remarks show that in what follows, the integrations must not be made throughout the whole surface of the body revolving: this consideration however does not affect the nature of the results.

The equation to a plane perpendicular to the axis of rotation, and passing through the centre of gravity of the body, is px + qy + rz = 0.

Let the body revolving be a spheroid of which the equation is

$$x^2 + y^2 + z^2 (1 + e^2) = a^2 (1 + e^2)$$

The equation to the tangent plane to the spheroid at the point x, y, z is

$$x x' + y y' + z z' (1 + e^2) = a^2 (1 + e^2)$$

The equations to the planes from whose intersection the line PB results, are

$$*z (qz' - ry') + y (rx' - pz') + z (py' - qx') = 0$$

$$px + qy + rz = D$$

D being a constant. The equations to the line PC are

$$\begin{aligned} x & \{ r (q z' - r y') - p (p y' - q x') \} + y \{ r (r x' - p z') - q (p y' - q x') \} = 0 \\ x & \{ q (q z' - r y') - p (r x' - p z') \} + z \{ q (p y' - q x') - r (r x' - p z') \} = 0 \end{aligned}$$

and neglecting p^2 , q^2 , pq,

$$x (q z' - r y') = y (p z' - r x')$$

 $x (q y' + p x') = z (p z' - r x')$

The equations to the direction of motion of the point P are

$$x (pz' - rx') = y (ry' - qr')$$

 $x (qx' - py') = z (ry' - qz')$

Cos. angle, which the direction of motion of P makes with the normal to the surface or $\cos APC$

$$= \frac{x' (ry' - qz') + y' (pz' - rx') + z' (1 + e^2) (qx' - py')}{\sqrt{\{(ry' - qz')^2 + (pz' - rx')^2 + (qy - px')^2\}} \sqrt{\{x'^2 + y'^2 + z'^2 (1 + 2e^2)\}}}$$

^{*} The notation is the same as p. 20, except that the accents at foot of x_i , y_i , z_i are omitted.

$$= \frac{e^2 z' (q x' - p y')}{r \sqrt{x'^2 + y'^2} \sqrt{x'^2 + y'^2 + z'^2}} \quad \text{nearly.}$$

The resistance acting in the direction of the normal, and since the velocity $=\sqrt{x'^2+y'^2}\sqrt{(p^2+q^2+r^2)}$ nearly;

$$C dr = 0$$

$$B d q + (A - C) r p d t = d t \int_{-\infty}^{\infty} \frac{\{z' x' - x' z' (1 + e^2)\} e^2 z' (q x' - p y') \sqrt{x'^2 + y'^2} d s (p^2 + q^2 + r^2)}{r \{x'^2 + y'^2 + z'^2\}}$$

$$A \, \mathrm{d} \, p + (C - B) \, q \, r \, \mathrm{d} \, t = \mathrm{d} \, t \int \frac{ \{ \, y' \, z' \, (1 + e^2) \, - z' \, y' \} \, e^2 \, z' \, (q \, x' \, - p \, y') \, \sqrt{x'^2 \, + \, y'^2} \, \mathrm{d} \, s \, (p^2 \, + \, q^2 \, + \, r^2) }{ r \, \{ \, x'^2 \, + \, y'^2 \, + \, z'^2 \} }$$

$$\sin\frac{C-A}{A}(nt+\gamma)\,\mathrm{d}\,c+c\frac{(C-A)}{A}\cos\frac{C-A}{A}(nt+\gamma)\,\mathrm{d}\,\gamma$$

$$=-\frac{n \operatorname{d} t e^{4}}{A} \int \frac{x' \, z'^{2} \, (q \, x'-p \, y') \, \sqrt{x'^{2}+y'^{2}} \operatorname{d} s}{\{x'^{2}+y'^{2}+z'^{2}\}}$$

$$\cos\frac{C-A}{A}(nt+\gamma)dc-c\frac{(C-A)}{A}\sin\frac{C-A}{A}(nt+\gamma)d\gamma$$

$$= \frac{n \operatorname{d} t \, e^4}{A} \int \frac{y' \, z'^2 \, (q \, x' - p \, y') \, \sqrt{x'^2 + y'^2} \operatorname{d} s}{\{x'^2 + y'^2 + z'^2\}}$$

since
$$\int x'^2 z'^2 ds = \int y'^2 z'^2 ds$$

$$dc = -\frac{n d t e^4 c}{A} \int \frac{x'^2 z'^2 \sqrt{x'^2 + y'^2} ds}{\{x'^2 + y'^2 + z'^2\}} + \frac{n d t e^4}{2 A} \sin 2 \frac{(C - A)}{A} (n t + \gamma) \int \frac{x' y' z'^2 \sqrt{x'^2 + y'^2} ds}{\{x'^2 + y'^2 + z'^2\}}$$

neglecting the term which is periodic,

$$dc = -nc \frac{e^4 dt}{A} \int \frac{x'^2 z'^2 \sqrt{x'^2 + y'^2} ds}{\{x'^2 + y'^2 + z'^2\}}$$

Let
$$\int \frac{x'^2 z'^2 \sqrt{x'^2 + y'^2} \, \mathrm{d} s}{\{x'^2 + y'^2 + z'^2\}} = D$$

D being a positive quantity.

$$dc = -\frac{n D c e^4 dt}{A}$$
 $e^{\frac{1}{c}} = \frac{n D e^4 t}{A}$, e being the base of Naperian logarithms.

When t is infinite c = 0; hence the latitude of the axis of instantaneous rotation increases until it reaches 90°, which is its limit.

Having determined the variations of c, γ and n by means of the above equations, the variations of the other constants ω , ψ_0 and φ_0 may be determined from the equations

$$p d t = \sin \varphi \sin \theta d \psi - \cos \varphi d \theta$$

$$q d t = \cos \varphi \sin \theta d \psi + \sin \varphi d \theta$$

$$r d t = d \varphi - \cos \theta d \psi$$